
Making New Themes
For Kvantum

Please install Kvantum, read the file “Theme-Config”, and create the configuration folder before
reading this document! A basic knowledge of Inkscape is also presupposed here.

Making new themes may take time but its logic is not complex. Each Kvantum theme consists of a
configuration file (explained in “Theme-Config”) and an SVG image. Both should have the same name
– MY_THEME, for example – and be put into the same folder “~/.config/Kvantum/MY_THEME”.
This document explains how you could create an SVG image for your new theme.

But let us first try an alternative theme that is already included in the source. Its name is Glassy. The
folder “doc/Glassy” contains the configuration file “Glassy.kvconfig” and the SVG image
“Glassy.svg”. If you install Glassy and change the active theme to it with Kvantum Manager, the
folder “Glassy” will be created inside “~/.config/Kvantum/”, the above-mentioned files will be put into
it, and the file “~/.config/Kvantum/kvantum.kvconfig” will contain:

theme=Glassy

Now run any Qt or KDE application and see the difference:

Scrollbar and buttons have a glassy look with rounded edges, tabs, progressbars and line-edits also
have rounded edges, tabs are left aligned and the active tab is attached to the tab widget. If you open
“Glassy.svg” with Inkscape, you will find just a few objects in it. Kvantum first searches that image for

the widget parts and if it does not find the relevant object names, it will go to the image of the default
theme. That is similar to what Kvantum does with the configuration files, as was explained in “Theme-
Config”. However, because of the concept of “state”, there is a difference:

SVG Object Inheritance Rule:

When an SVG object is missing from the SVG file of a theme,
 (1) If it has no state, the object with the same name from the default theme will be used; but
 (2) If it has a focused, pressed or toggled state, the normal state object from the same SVG file
will be used and only if it does not exist either, the object with the same name from the default
theme will be used.

Back to Glassy, for not showing scrollbar grip indicators of the default theme, invisible rectangles with
names “grip-normal”, “grip-focused” and “grip-pressed” are created in “Glassy.svg”. On the other
hand, in the same image, there is no object for the interior of progressbar patterns but just objects for
their frame, so that the new frame is used alongside the default interior.

The number of objects you create inside your SVG image depends on how much you want your theme
to be different from the default one. The easiest way is to start with the default SVG image itself. The
file “default.svg” in the “doc” folder is the image for the default theme. It contains useful comments on
various objects. (Please do not use the image with the same name in the folder “style/themeconfig/”
because it is cleaned by SVG Cleaner and not only does not contain any comment, the groupings of its
objects could also be misleading!) You could change the objects one by one in whatever way you
prefer, delete those objects you do not want to change, put invisible rectangles in place of those you
want to omit, and even add new objects.

Do not forget that the look of your theme is determined by its configuration file too. Also note that your
theme will be used together with a color scheme of your choice. Therefore, select colors and gradients
carefully, so that they match your color scheme. Yes! There may be a lot of work to do but it is what
you pay for being able to control virtually every aspect of each widget.

After you finished your work with the image, first back it up, remove all of its comments, clean it up
(Inkscape → File → clean up document) and then, preferably, clean it with SVG Cleaner too. SVG
Cleaner is a nice tool that can reduce the size of an SVG image considerably. In this way, the memory
footprint will be minimized. If SVG Cleaner is not in the repository of your Linux distro, you could get
its latest source from https://github.com/RazrFalcon/SVGCleaner. If you have used the cloning menu-
item of Inkscape (which links similar objects) as far as possible, the image will have the minimum size.

To make your theme available to others, put these three files in a folder named MY_THEME:

MY_THEME.svg (the SVG image)
MY_THEME.kvconfig (the Kvantum configuration file)
MY_THEME.colors (a KDE color scheme)

In this way, your users could install and choose your theme easily with “Kvantum Manager”, which is a
simple GUI made for that purpose.

There are other ways of making theme folders, especially when your Kvantum theme is a part of a
more comprehensive theme package with the same name, which, for example, includes GTK+ themes

https://github.com/RazrFalcon/SVGCleaner

too. For more information, see Theme Installation Paths!

That is the basic logic behind making themes for Kvantum. Now, we pay attention to some details in
the following sections:

Elements
Interior and Frames
Indicators
Flat Indicators and Hight Contrast
Menu and Item Check Boxes and Radio Buttons
States
Orientations
Inactiveness
The Default (Push) Button
Toolbar Buttons
Grouped Toolbar Buttons and Separators
Inheritance and Alignment
Tinting Colors
Patterns
Junctions for Tab Widgets
Floating Tabs
Joined Tabs and Tab Separators
Translucency and Shadow for Menus and Tooltips
Blurring for Menus and Tooltips
Window Translucency
Maximum Corner Roundness (Frame Expansion)
Frame Expansion and Border
Dealing with exceptions
Theme Installation Paths
SVG Symbolic Icons
Dark variants of themes
A word about QML/Qt Quick

Elements

Each section of the configuration file – except for the General, GeneralColors and Hacks sections –
determines the look of a widget by setting the elements that are used to draw it (see Sections Table in
“Theme-Config”). Usually, there are three kinds of elements, namely, frame, interior and indicator.
Some widgets may not need all of them and some may need more.

The basic names of elements are mostly optional but there are a few exceptions, i. e. the names of dial
elements (dial, dial-notches, dial-handle), the default button indicator (button-default-indicator), and
the header separator (header-separator).

Interior and Frames

The names (or id strings) of the rectangular objects, that are used to draw the frame and interior
elements of a widget, depend on its state. There are five states at most: normal, focused, pressed,
toggled, and disabled. For each state, there are at most nine rectangular objects: one for the interior and
eight for the frame.

Each interior object should have a name (id) with this format:

iNAME-STATE

Here, iNAME is set as the string value of “interior.element” in the configuration file, and STATE is the
state of the widget the object represents. The name of each frame object should be:

fNAME-STATE-POSITION

Where fNAME is set as the string value of “frame.element” in the configuration file, and POSITION
could be top, bottom, left, right, topleft , topright , bottomleft or bottomright.

For example, the following image shows the names of the nine objects that together draw the normal
state of a button widget, whose frame and interior names are both “button”. It could be defined in the
“PanelButtonCommand” or “PanelButtonTool” section of the configuration file.

Not all widgets have frames. For example, windows do not have frames and it will make no difference
whether you set frame=true and define a frame element under the Window section.

Also, some framed widgets may not exactly obey the frame widths provided under their corresponding
sections. For example, the frame of a tooltip has a uniform thickness on all sides, which is equal to the
maximum of the frame widths defined under the Tooltip section. Or if there is not enough space for a
button, all of its frame widths will be set to 3px at most.

If, for whatever reason, you do not want an interior for a widget, you could add interior=false to its
corresponding section in the config file. In most cases, that is preferable to adding a transparent interior
element to the SVG file because, only if the key interior is set to false, Kvantum will draw a suitable

background for the widget whenever there is no enough contrast between its text color and the
background color of its container (for example, when a white line-edit is inside a dark tool-bar).

Indicators

An indicator is a sign or icon on a widget that shows some action is available or informs the user of
something about that widget.

For instance, some tool buttons have “arrow indicators,” which will show a drop-down menu if
pressed. Arrow indicators also appear on combo boxes to show that other options are available. Or the
handle of a scrollbar slider may have an indicator that can make it easier to find it. The close button of
a tab can be seen as an indicator too. And so on.

The element name of an indicator is (made out of) the string value of “indicator.element” under the
relevant section of the configuration file. Its SVG object name is made by adding its state to its element
name with a dash, as in case of interior and frames.

The following table is a list of all indicators Kvantum draws and also their possible states. Some of
them are simple indicators, some are complex ones consisting of multiple elements whose names are
derived from the same string, and yet some others are complete elements with interior, frame and
indicator parts. Here, “indicator base name” means the string value of “indicator.element” under the
relevant section. For simple indicators, it is the indicator element name itself.

Section Indicator

TreeExpander A sign that shows whether a tree branch is expanded or not. Its
element names are made by adding “-minus” and “-plus” to the
indicator base name (the frame and interior are not used) and can
have normal, pressed, focused and disabled states.

IndicatorSpinBox Up/down and plus/minus indicators for spin widgets. Their element
names are made by adding “-up”, “-down”, “-left”, “-right”, “-
plus” and “-minus” to the indicator base name of
IndicatorSpinBox. They can have all possible states.

Also, an optional separator between the line-edit and horizontal
buttons (or if the buttons are not drawn but inline_spin_separator is
true, before the indicators). It consists of top, middle and bottom
objects, whose names are made by adding the strings “-separator-
top”, “-separator” and “-separator-bottom” to the indicator base
name of IndicatorSpinBox, respectively. Their width is the width of
the left frame (which is usually too wide for this; grouping with a
wider transparent rectangle may be needed in the SVG file) and the
heights of the top and bottom objects are the heights of spinbox’s
top and bottom frames, respectively. They can have normal,
focused and pressed states. The top and bottom objects are drawn
only if the normal middle object exists.

HeaderSection The sorting indicators for headers in item views, whose element

names are made by adding “-down” and “-up” to the indicator
base name of HeaderSection. They can have normal, pressed,
focused and disabled states.

Also, the header separator, whose SVG object name is always
header-separator. If no header separator is included in the SVG
image, the right frame of the HeaderSection will be used as a
separator. The separator width is always equal to the right frame
width.

DropDownButton An indicator that shows a drop menu is available. It is always
downward and can have all possible states (but see IndicatorArrow
below for an explanation about the toggled state).

Tab Tab close button and also tab-tear indicators. Their indicator names
are made by adding “-close” and “-tear” to the indicator base
name of Tab, respectively. The close indicator can have normal,
pressed, focused and disabled states but the tear indicator is
stateless, its width is 2px and its height is that of the tab bar.

If an element with the toggled state is found for the close indicator
in the SVG image, it will be used on the active tab. This may be
useful when the background of the active tab has a high contrast
with that of normal tabs. Moreover, if “-close-toggledPressed ” and
“-close -toggledFocused” elements are also found, they will be
used for the focused (mouse-over) and pressed states of the close
button on the active tab. (Note that “toggledPressed ” and
“toggledFocused” are not usual states.)

Also, see Joined Tabs and Tab Separators!
IndicatorArrow Up/down/left/right/ arrows, only used for extensions of very small

toolbars/menubars and also for menu scrollers of very tall menus
(but also see MenuItem below).

Their indicator names are made by adding “-up”, “-down”, “-left”
and “-right” to the indicator base name of IndicatorArrow and they
can have all possible states but the toggled state can be omitted, in
which case the pressed state will be used instead (as an exception to
the SVG Object Inheritance Rule).

Scrollbar Add-line and sub-line indicators for scrolling. Their indicator
names are made as in the case of IndicatorArrow above.

These indicators will not be drawn if “scroll_arrows” is set to false
under the General section.

ScrollbarSlider A decorative indicator on the slider of a scrollbar. It can have
normal, pressed and focused states.

ScrollbarGroove Glows at the top and bottom of the scrollbar but inside its groove
interior. Their indicator names are made by adding “-topglow” and

“-bottomglow” to the name of the interior element of
ScrollbarGroove and they can only have the normal state (but can
also have “inactive” counterparts). Their extent is always twice the
scrollbar thickness.

Toolbar The handle of a floatable toolbar, whose indicator name is made by
adding “-handle” to the Toolbar indicator name. It has no state. If
the key “center_toolbar_handle” is set to true under the General
section, its width and height will both be equal to the toolbar
indicator size; otherwise, its width will always be 8 px and its
height will be equal to the toolbar interior height (for horizontal
toolbars).

Also, the toolbar separator, whose indicator name is made by
adding “-separator” to the Toolbar indicator name. It has no state
either. Its thickness is toolbar_separator_thickness but never less
than the toolbar indicator size or 4, whichever is greater.

SizeGrip The window resize indicator with a maximum size of 13px. Its
states are only normal and focused and it should be drawn for the
right bottom corner.

PanelButtonCommand An indicator for the default push button, whose SVG object name is
always button-default-indicator.

Also, another indicator showing that the button has a drop menu,
whose indicator name is made by adding “-down” to the indicator
name of PanelButtonCommand. It can have normal, pressed,
focused and disabled states.

PanelButtonTool Arrow indicators. Their indicator names are made as in the case of
IndicatorArrow above.

Note: By choosing the same name (“arrow”, for example) for the
indicators of TreeExpander, IndicatorSpinBox, HeaderSection,
IndicatorArrow, Scrollbar, PanelButtonCommand and
PanelButtonTool, you could use the same set of SVG elements for
all of them. However, that is optional.

Also, see Grouped Toolbar Buttons and Separators!
Slider Slider tick mark. It is a horizontal rectangle that only has the

normal state (but can also have an “inactive” counterpart). Its name
is made by adding “-tick” to the interior name of Slider. Its width is
5px and its height is 1px.

SliderCursor That handle of a slider (a volume control, for example). It is a
complete element with interior, frame and indicator parts, although
usually the interior is enough for drawing it. Its states can be
normal, pressed, focused and disabled. Also, see “Orientations” to
know how it should be drawn.

If a normal interior element with “-tickless” appended to its name
is found in the SVG file, then the “-tickless” element(s) will be
used instead of the usual element(s) for drawing the handle when
the slider has no tick marks. The width of such a handle is always
equal to its height and is given by the value of
tickless_slider_handle_size in the kvconfig file – or
slider_handle_width if the former key is not present.

TitleBar The “maximize/restore/minimize/close/shade/menu” indicators of
the title-bar of a “QmdiSubWindow”, whose names are made by
adding “- maximize”, “- restore”, ..., “-menu” to the indicator base
name of TitleBar respectively. They can have the normal, focused,
pressed and disabled states, except for the menu indicator, that can
only have the normal state.

Dock The “close” and “restore” indicators, whose names are made by
adding “-close” and “-restore” to the indicator base name of Dock
respectively. They do not have a state.

If Dock indicators are missing, the corresponding normal TitleBar
indicators will be used.

MenuItem The tear-off indicator for detachable menus, whose indicator name
is made by adding “-tearoff” to the indicator base name of
MenuItem. It only has normal and focused states and is repeated
every 20px horizontally. Its height is always 8px (use object
transparency to make a thinner indicator).

Also, the menu-item separator, whose indicator name is made by
adding “-separator” to the indicator base name of MenuItem. It
has no state and its height is menu_separator_height (under the
General section and 10px by default – you can also use object
transparency to make a thinner separator).

Also, the submenu arrows, whose indicator names are made like the
right and left IndicatorArrow elements (they do not have up or
down directions) and whose states can be normal, pressed, focused
and disabled.

Note: If there is no submenu arrow element for menu-items in the
SVG image, the right and left IndicatorArrow elements will be
used.

Splitter An indicator for the handle of a splitter. It is a complete element
with interior, frame and indicator parts. Its states are normal,
focused and pressed.

Here, indicator.size gives the indicator height for vertical splitters
(the width being given by splitter_width under the General section)

ComboBox The ComboBox (downward arrow) indicator is used only if its

normal state exists; otherwise, the DropDownButton indicator will
be used by combo boxes too. Here, the indicator name is the same
as the indicator base name and it can have all possible states.

When the combo box is in the editing mode but is not drawn as a
line-edit (the key combo_as_lineedit is false), two sets of optional
separators can also be drawn:

(1) A separator between the line-edit and arrow button. It consists
of top, middle and bottom objects, whose names are made by
adding the strings “-separator-top”, “-separator” and “-
separator-bottom” to the indicator base name of ComboBox,
respectively. Their width is the width of the left frame (which is
usually too wide for this; grouping with a wider transparent
rectangle may be needed in the SVG file).

(2) A separator between the icon button and line-edit. It consists of
top, middle and bottom objects, whose names are made by adding
the strings “-icon-separator-top”, “-icon-separator” and “-icon-
separator-bottom” to the name of the frame element of ComboBox,
respectively. Their width is the width of the right frame (usually too
wide for this).

The above-mentioned separators can have normal, focused, pressed
and toggled states. The top and bottom objects are drawn only if the
normal middle object exists and their heights are equal to the
heights of combo-box’s top and bottom frames, respectively.

LineEdit Line-edits do not have any indicator unless the key
combo_as_lineedit is set to true (see “Theme-Config”), in which
case their downward indicator will be used by their containing
editable combo boxes only if its normal state exists; otherwise, the
DropDownButton indicator will be used by editable combo boxes
too. The indicator name is the same as the indicator base name and
it can have normal and focused states.

CheckBox and RadioButton Contrary to other indicators, they are just interiors whose names are
made by adding “-normal”, “-focused”, “-checked-normal” and
“-checked-focused” to the interior names of CheckBox and
RadioButton. The Checkbox has also two extra elements, whose
names are made by adding the strings “-tristate-normal” and
“-tristate-focused” to its interior name. They can also have
“inactive” counterparts.

Also, see Menu and Item Check Boxes and Radio Buttons!
ProgressbarContents This can be seen as the indicator (bar) of Progressbar (the groove).

It consists of frame and interior parts. Its states can be normal,
toggled, focused and disabled but, usually, only the normal and
disabled SVG elements are needed alongside those of Progressbar.

If the value of spread_progressbar under the General section is
false (the default), ProgressbarContents will be drawn inside
Progressbar so that the distances between their borders will be the
frame widths of the latter. If spread_progressbar is true,
ProgressbarContents will be spread so that it will have the same
borders as Progressbar.

Please also note that the values of frame.expanded.top,
frame.expanded.bottom, ... under Progressbar do not affect the
distances between the borders when spread_progressbar is false.

Dial indicators (without section) They are stateless and their names are always “dial”, “dial-notches”
and “dial-handle”.

The “dial” and “dial-notches” objects should be circular (see the
image “default.svg” in the source).

Also, an optional (circular) object with the name “dial-focus” can
be added to indicate that the dial has the keyboard focus. It will be
drawn on the top of the “dial” object.

Focus Frame It is a frame, under the Focus section, that is drawn around the
labels of some widgets with keyboard focus. It has no interior and
no state. Its (frame) thickness is at most 2px, regardless of the
frame widths under the Focus section.

If the key focusFrame is true for a button like widget (CheckBox
and RadioButton included) or under the Tab, GroubBox, or Slider
section, the focus frame will be replaced by a frame, whose element
name is frame.element plus the string “-focus” and which has no
state. If, in addition, the key focusInterior is true, a stateless interior
with the name interior.element plus the string “-focus” will also be
drawn.

Also, see “Orientations”.

“Flat” Indicators and High Contrast

Like other widgets, tool or push buttons can have different backgrounds and their text colors should be
set appropriately to have enough contrast with their background colors. But unlike other widgets, tool
and push buttons can be flat, in which case no background (panel) is drawn for their normal state. In
such cases, Kvantum automatically sets their text color to that of the widget behind them (toolbar,
menubar or any container whose text color can be set). It will also use “flat” indicators instead of the
usual ones if they exist in the SVG image and if the usual indicators do not have enough contrast with
the widget behind flat buttons.

The names of flat indicator objects are made by adding the string “flat-” to the beginning of the names

of usual indicators. For example, if the name of the indicator element under the PanelButtonCommand
section is “arrow”, extra objects with names “flat-arrow-up-normal”, “flat-arrow-down-normal”, …,
“flat-arrow-right-focused”, “flat-arrow-left-pressed”, etc. could be added to the SVG image. Also, the
default button indicator, whose name is always button-default-indicator, can have a flat counterpart
with the name flat-button-default-indicator.

If Kvantum does not found the “down-normal” objects of “flat” indicators, it will use the usual ones for
drawing the indicators of flat buttons. “Flat” indicators are needed when there is a high contrast
between the background color of buttons and that of widgets behind them, for example, when dark
buttons with white texts and indicators are inside light containers and become flat.

To determine whether there is a high contrast, Kvantum relies on the value of text.normal.color.
Therefore, apart from textless widgets, only the interior elements of those widgets that accept state-
specific text colors can have a high contrast with the window or base background. For example,
menubars, toolbars and buttons have state-specific text colors but generic frames or tab frames do not
(see the note in the explanation of the key text.normal.color in the file Theme-Config.pdf). As a result,
the interior colors of toolbars, menubars or buttons can have a high contrast with the window color (the
value of window.color under the section GeneralColors), provided that their normal text colors are set
correctly in the configuration file. However, the interior colors of generic frames or tab frames (if they
have any interior element at all) should NOT have a high contrast with the window color because
text.normal.color has no meaning for them.

Flat indicators should be present in light-and-dark themes (a light theme with a dark highlight color, for
example). They are not limited to tool and push buttons and can be used wherever the background color
changes in such a way that it has a high contrast with its usual value. Although buttons only need the
normal state of their flat indicator, depending on the light-and-dark theme, the SVG file may need to
include all states of flat indicators.

Menu and Item Check Boxes and Radio Buttons

Check boxes and radio buttons can be in menus. Their appearance in menus are like in other places,
except that they may be drawn a little smaller. But if you like to give a different appearance to check
boxes and/or radio buttons in menus, you could simply add SVG objects, whose names are constructed
by adding “menu-” to the beginning of the names of ordinary check box and radio button objects. If a
“menu-” check or radio object is missing, Kvantum will use its corresponding ordinary object.

Likewise, check boxes can also be positioned in view items (radio buttons cannot). If you need a
different appearance for them in view items, you could add separate SVG objects, whose names are
made by prepending “item-” to the names of ordinary check box objects. Again, if an “item-” check
box object is missing, its corresponding ordinary object will be used by Kvantum.

States

As mentioned before, there are five states at most: normal, focused, pressed, toggled, and disabled. You
do not need to draw any object for the disabled state of interiors or frames because they are

automatically created based on the normal state by reducing its opacity.

However, the disabled states of most indicators should be included in the SVG image because, for
example, we may want disabled indicators to be totally invisible or have a neutral color.

Not all widgets have all the possible states. For example, menu-items and menubar-items do not have
normal and disabled states; toolbars only have the normal and disabled states; and line-edits can only
be in a normal, focused or disabled state, etc. On the other hand, the SVG elements used for drawing
frame focus rectangle (under the Focus section) or those related to the focus frame/interior cannot have
any state because they are used for distinguishing some widgets that already have keyboard focus.

You could know about the possible states by examining the image “doc/default.svg” with Inkscape.
For possible states of indicators, see their table. Not drawing redundant objects not only saves your
time but also reduces the memory usage.

Orientations

Some widgets, like scrollbars, can be oriented both vertically and horizontally; some others, like tabs,
have even more orientations. Even if you use gradients, you will need to draw objects only for one of
the possible orientations, which may be different based on which orientation a widget most commonly
has in various applications. There is no consensus about that but these are the orientations you should
use when you draw objects for Kvantum:

Widget Orientation

Default push button indicator To be drawn for the right bottom corner.
Scrollbar (slider, groove, indicator, grip) Vertical
Slider groove (like in volume controls) Vertical
Header Horizontal
Header Separator (between header sections) Vertical (the header itself is horizontal)
Slider Handle Vertical with tick marks to the right of the slider. The

handle will be rotated or mirrored only if its width and
height (the values of the keys slider_handle_width and
slider_handle_length) are different.

Splitter Handle Vertical (which means that the splitter itself is horizontal
technically)

Progressbar (groove, pattern/indicator) Horizontal
Tab Horizontal (and top)
Toolbar Horizontal
Toolbar Handle (for floatable toolbars) Vertical (the toolbar itself is horizontal)
Toolbar Separator (between toolbar buttons) Vertical (the toolbar itself is horizontal)
SizeGrip To be drawn for the right bottom corner.

Kvantum automatically draws the other orientation(s) for each of the above widgets. However, all
possible orientations of arrow indicators should be included in the SVG file.

Inactiveness

The window containing a widget may not have keyboard focus, in which case it is said to be inactive.
Inactive windows are usually distinguished from the active one by their title-bars.

In Kvantum, inactiveness of a widget means that its window is inactive. Inactiveness can be considered
as a sub-state so that, for each state of an SVG object, an “inactive” counterpart may be added. The
name of such objects should have the string “-inactive” after their state strings. For example:

E-normal-inactive(-top/-bottom/...)
E-toggled-inactive(-top/-bottom/...)
E-disabled-inactive(-top/-bottom/...)

Where “E” is the name of the element that the object draws, as it appears in the configuration file.
However, the pressed and focused states cannot have inactive counterparts because widgets are pressed
or have focus only inside active windows.

This feature is completely optional and is not used in the default theme. If “inactive” objects are
present, they will be used for drawing widgets on inactive windows; otherwise the usual objects will be
used for drawing widgets on both active and inactive windows.

Please note that, (1) except for button like widgets and, probably, view items, the usual and inactive
backgrounds should not have high contrast with each other (as is the case with their text colors; see
Theme-Config.pdf) and (2) the background of an inactive element should have enough contrast with its
corresponding inactive text color defined in the kvconfig file. Also, see the note about item-views.

The Default (Push) Button

The default push button is the one that will be pressed if the “Enter” key is pressed. It is usually
distinguished by its bold text, unless it has no text, or the value of normal_default_pushbutton under
the Hacks section is true, or all push buttons have bold texts. However, there are two other (optional)
ways of making it distinct: (1) by adding a default button indicator; and/or (2) by giving a default frame
and/or interior to it.

The default button indicator has no state and the name of its SVG object is always “button-default-
indicator”. When drawn on a button, its size is equal to the value of the key “indicator.size” under the
PanelButtonCommand section and its place is on the right or left bottom corner of the widget for the
LTR (left-to-right) or RTL (right-to-left) layout direction respectively.

The names of the default frame and interior SVG objects are made by adding the string “-default” to
the end of the name of button elements under the PanelButtonCommand section. For example, if the

latter is “button”, the default button SVG objects should be named as “button-default”, “button-
default-top”, “button-default-topleft”, “button-default-topright”, etc. The interior object (“button-
default”, in this example) is better to be semi-transparent, and you could omit it if you want to have
only a default frame. Like the default indicator, the default frame and interior do not have any state.

Toolbar Buttons
Toolbar buttons are tool buttons that are situated on toolbars. Therefore, they get their appearance from
the section PanelButtonTool. But sometimes, you might want to distinguish between toolbar buttons
and other tool buttons visually. For example, you may have used a dark toolbar with a light theme and
want toolbar buttons to be dark too. You could use the section ToolbarButton for that.

The section ToolbarButton gets all of its variables from PanelButtonTool, except for text colors, text
shadow, and elements (i.e. indicator, frame and interior). So, you could add this section to the config
file and only set the values of those keys under it. Like other keys, they can get their values by
inheritance too. Setting the values of other keys, such as frame.bottom or text.margin.top, would have
no effect under the section ToolbarButton because their values are taken from the PanelButtonTool.

Similarly, the optional sections ToolbarComboBox and ToolbarLineEdit are for combo-boxes and line-
edits on toolbars. The only difference is that the text color of ToolbarLineEdit is always the text color
of the toolbar behind it. Therefore, its interior (if any) should have a good contrast with that color.

Grouped Toolbar Buttons and Separators

If the value of the General key group_toolbar_buttons is true, toolbar buttons will be drawn raised and
adjacent toolbar buttons will be grouped together, so that right and left frames will not be drawn
between them.

The SVG elements of toggled buttons may have a sunken appearance and sunken shapes may not look
natural when joined to raised ones horizontally. For this reason, if there are “button separator” objects
in the SVG image, they will be draw between toggled buttons and their adjacent non-toggled buttons in
a group. The base name of the button separator objects is made by adding “-separator” to the end of
the frame name under the PanelButtonTool section (or ToolbarButton if it exists). They consist of main,
top and bottom objects and have no state. Their width is the right frame width of PanelButtonTool, and
the heights of the top and bottom objects are the top and bottom frame widths of the same section
respectively.

For example, when the name of the PanelButtonTool (or ToolbarButton) frame element is “button”, the
names of the button separator objects are “button-separator-normal”, “button-separator-top” and
“button-separator-bottom”.

If the right frame width of PanelButtonTool is too thick for a separator, a right aligned thinner rectangle
could be put inside an invisible one and they could be grouped together.

Inheritance and Alignment

Although the key inherits can be used under various widget sections for not repeating identical
properties, its use can result in an interesting visual effect too. For example, if this key is used under the
ComboBox section as “inherits=PanelButtonCommand”, and provided that no frame width or text
margin is specified, the frame widths and text margins of combo-boxes will be equal to those of push-
buttons. As a result, if a combo-box is located adjacent to a push-button horizontally and if both of
them either have icon or are iconless, they will look aligned; in other words, their top and bottom
borders will be on the same level, respectively. The same thing can be said about tool-buttons (under
the section PanelButtonTool), line-edits and spin-boxes.

Therefore, if you want the horizontally adjacent widgets to look aligned as far as possible, you could
rely on the key inherits and set it to PanelButtonCommand, as the best candidate for inheritance.

Patterns

A pattern is an image used for tiling the interior of an element. The interior is tiled by it when, at least,
one of the keys interior.x.patternsize or interior.y.patternsize has a positive value under the
corresponding section. (The absence of these keys means no tiling.) These keys show how the interior
is tiled by the pattern in the horizontal and vertical directions, respectively. If one of them is zero, there
will be no tiling in its direction.

The SVG object used for tiling is the interior object itself unless there is another SVG object whose
name is made by adding “-pattern” to the end of the name of the interior object, in which case, the
pattern is drawn as a tiled layer over the interior background. Needless to say, in the latter case, the
pattern object should have some translucency for the background to be seen behind it.

For example, if the Window section has an interior element called “window” and if, at least, one of the
pattern sizes is greater than zero, the SVG object “window-normal” will be used for tiling the
background of windows and dialogs (see Interior and Frames). However, if an object with the name
“window-normal-pattern” is also present, the background will be drawn by “window-normal” without
tiling and then, “window-normal-pattern” will be used for tiling over it.

Also, note that some widgets never accept patterns, even when the pattern size keys have positive
values for them. They are widgets, like grouped toolbar buttons, spinbox buttons and view-items, for
which a pattern does not have much meaning.

Patterns can rarely be used with frames too – especially with the Focus section – when the value of the
key frame.patternsize is positive.

Tinting Colors

Under the Hacks sections, there are two keys for color tinting, namely, tint_on_mouseover and
no_selection_tint. The former tints the label colors on mouseover with the highlight color by the

percentage of its value and may be useful with monochrome icons. Usually, it does not need to be set
by the theme but can be customized by the user.

The second key determines whether the label icons should be tinted with the highlight color when
selected. It may need to be set to true with dark-and-light themes. The reason is that there are
monochrome icon sets that reverse the color of icons in the “selected” mode and, with dark-and-light
themes, Kvantum may change the icon mode to “selected” for appropriate icons to be used on dark or
light backgrounds. In such cases, if no_selection_tint is not set to true explicitly, ordinary icons might
be tinted with the highlight color when not selected. Therefore, it is always a good idea to set
no_selection_tint to true with dark-and-light themes.

Junctions between Attached Active Tabs and Tab Widgets

If the key attach_active_tab is true, active tabs will be attached to their tab widgets. In fact, the frame
element from the section TabFrame will be cut under an active tab. Of course, the bottom frames of
active tabs should be drawn in such a way that they appear really attached to their tab widgets. If the
frames are thin under the sections Tab and TabFrame, everything will be all right. But in the case of
thick frames or when you want to customize the two junctions between the left/right frames of the tab
and the cut frame of the tab widget, you could add extra SVG objects, whose names are those of the
frame elements of TabFrame plus the two strings “-leftjunct” and “-rightjunct”.

Provided that the frame name under TabFrame is tabframe, the following image shows two of these
extra objects for the top frame of a tab widget.

In this image, the dotted rectangles show whole frames, which are drawn in such a way that only their
blue part is visible.

Three other pairs of such objects for left, right and bottom frames should also be drawn appropriately if

tabframe-normal-top-leftjunct

tabframe-normal-top-rightjunct

tabframe-normal-top

such junctions are used at all. The widths of top junctions are left and right frame widths under the Tab
section and their height is the top frame width under TabFrame, and similarly for other junctions.

“Floating” Tabs

In some applications, the tab-bar has no tab widget or the latter is in the “document mode”, so that tabs
seem “floating”. If you have used tab junctions or chosen shapes suitable for attaching tabs to a tab
widget, you might want to choose different shapes for the tab interior and (bottom) frames in such
cases. You could do so by adding another set of objects, whose names are made by adding the string
“floating-” to the beginning of the names of the original tab objects.

For example, if the interior and frame elements under the Tab section are named “tab”, the names of the
extra “floating” objects will be “floating-tab-normal”, “floating-tab-normal-left”, … , “floating-tab-
toggled”, “floating-tab-toggled-left”, etc.

This feature is optional, of course. If Kvantum finds an interior object for the normal floating tab
(“floating-tab-normal” in the above example), it will use the floating objects for drawing tabs when
there is no tab widget or when it is in the document mode; otherwise, it will use ordinary tabs in all
places.

Joined Tabs and Tab Separators

The value of the key joined_inactive_tabs under the General section is true by default, which means
that inactive tabs are drawn joined together, i.e. their right and left frames are not drawn between them.
Of course, if that key is set to false, inactive tabs will be drawn separated from each other.

Some themes may need the inactive tabs to be drawn joined together in the “document mode” but not
in the ordinary mode, or conversely. That – among other things – is possible with “tab separators”.

To simplify the following explanation, we suppose that the value of the key no_active_tab_separator
(under the General section) is false, which is its default value. Later we will return to this special key
and see how it interacts with tab separators.

When joined_inactive_tabs is true, Kvantum looks for “tab separator” objects in the SVG image and
only if it finds them, it will draw them between all tabs – inactive and active – properly. The base name
of the tab separator objects is made by adding “-separator” to the end of the tab frame name under the
Tab section. They consist of main, top and bottom objects and have “normal” and “toggled” states. If
floating tabs are used for the “document mode”, they should have their own separator, whose base
name is made by adding the string “floating-” to the beginning of the ordinary tab separator name.

For example, when the name of the tab frame element is “tab”, the names of the ordinary tab separator
objects in the normal state are “tab-separator-normal”, “tab-separator-normal-top” and “tab-
separator-normal-bottom”, and the names of the floating tab separator objects in the toggled state are
“floating-tab-separator-toggled”, “floating-tab-separator-toggled-top” and “floating-tab-separator-
toggled-bottom”. Of course, depending on your specific theme, you could omit the top and/or bottom

objects but the absence of the main (middle) object means no separator at all.

Therefore, if you want joined inactive tabs in the ordinary mode but separated tabs in the “document
mode”, you should set joined_inactive_tabs to true in the configuration file of your theme, use floating
tabs, and add floating separator objects but not ordinary ones to your SVG image. Conversely, to have
joined tabs only in the “document mode”, you should set joined_inactive_tabs to true again, use
floating tabs, and add ordinary separator objects but not floating ones to your SVG mage.

There is also another key that adds more flexibility to how tab separators are drawn, namely
no_active_tab_separator. Its value of is false by default, as we supposed earlier. But if it is set to true,
tab separators will be drawn only between inactive tabs.

Tab separators can be used for other purposes too. For example, if you want to remove all right and left
frames between adjacent tabs, whether they are inactive or active, then, you could set
joined_inactive_tabs to true (while leaving no_active_tab_separator to its default false value) and add
an invisible rectangle with the name “tab-separator-normal” to the SVG image.

The tab separator objects should be drawn for top horizontal tabs – Kvantum will automatically rotate
them for other kinds of tabs. Their width is that of tab’s right frame and the heights of the top and
bottom objects are the heights of tab’s top and bottom frames, respectively.

Translucency and Shadow for Menus and Tooltips

If compositing is enabled, menus and tooltips can be translucent and/or have shadow. The following
explanation is for menus but it applies to tooltips as well.

Let us suppose that the name of the menu element is “menu”, as is the case with the default theme. So,
the names of its corresponding SVG objects are menu-normal, menu-normal-top, menu-normal-topleft,
menu-normal-left, etc. If these nine objects have translucency, the menus will be translucent when
compositing is available.

To have shadow, we should set the key menu_shadow_depth to a positive value and also add another
group of frame objects, whose names include the word “shadow” as the second word in their names,
i.e. menu-shadow-top, menu-shadow-topleft, menu-shadow-left, etc. The shadow and the menu frame
should together be divided into these eight objects. For example, menu-shadow-top draws the shadow
for the top part of menus and when menus have frame, it also includes the top part of their frame. The
object menu-normal is used, with or without shadow, for drawing the interior of menus.

The keys menu_shadow_depth and tooltip_shadow_depth, in the General section of the configuration
file, control the width of menu and tooltip shadows respectively.

If the key composite is set to false or the environment does not support compositing, menus and tooltips
will be drawn without translucency and shadow.

Blurring for Menus and Tooltips:
“Shadow Hint” Rectangles

If (pop-up) blurring is enabled – which is possible only with KDE’s KWin and when its blur effect is
enabled – the regions behind translucent menus and tooltips will be blurred. But for blurring not to
include their shadows, extra “shadow-hint” rectangles should be appropriately drawn to inform
Kvantum about pure shadows.

For example, suppose that the name of the menu element is “menu”. Then, there are four “shadow-
hint” rectangles with these names:

menu-shadow-hint-top
menu-shadow-hint-bottom
menu-shadow-hint-left
menu-shadow-hint-right

They determine the height or width of the purely shadowy parts of the top, bottom, left and right frames
respectively. For example, the height of menu-shadow-hint-top is that of menu-shadow-top minus the
height of the top frame included in it, etc. The following image shows this:

Therefore, only the heights of menu-shadow-hint-top and menu-shadow-hint-bottom are important,
while for menu-shadow-hint-left and menu-shadow-hint-right, only the widths are pertinent.

The same is true for tooltips, of course. So, there can be eight “shadow-hint” rectangles in total.

Even if you do not use blurring with your theme, add these eight rectangles when your menu and
tooltip objects have shadow because they are used in positioning menus, they are needed for finding
shadow sizes when the General key spread_menuitems is true, and the user might enable blurring with
Kvantum Manager later.

* * *
Kvantum announces its real menu shadow sizes with the QObject property “menu_shadow”, which
can be retrieved in a Qt application by a code line like this:

widget->style()->property("menu_shadow").value<QList<int>>();

The retrieved QList contains shadow thicknesses in this order: left → top → right → bottom.

menu-shadow-hint-top

menu-shadow-top

* * *

Please note that blurring effects of compositors other than KWin cannot be controlled by Kvantum!
Those compositors may also interfere with menu/tooltip shadows, in which case, you might need to set
shadowless_popup to true under the General section with them. Ideally, you might be able to
deactivate shadow and blurring for menus/tooltips in the compositor’s settings instead.

Window Translucency

Whole windows and dialogs can be made translucent. That needs compositing, a true value for
translucent_windows in the configuration file, and either a translucent SVG image for the interior
element of the Window section or a positive value for reduce_window_opacity under the General
section. As is the case with menus and tooltips, there will be no translucency if compositing is not
enabled in the configuration file or not supported by the environment.

Some applications are not compatible with window translucency and may show totally transparent
windows or even crash. They are usually Qt video playing applications (although some Qt-based video
players, like VLC, support window translucency). You could exclude them by adding the names of
their executable files to the opaque key.

Maximum Corner Roundness
and Frame Expansion

Although the four SVG objects used for drawing corner frames (-topleft, -topright, -bottomleft, -
bottomright) can be quite curved, the degree of corner roundness depends on the frame widths too and
so, it cannot be high.

However, Kvantum has a key that can expand frames, namely “frame.expansion”. If its value is
greater than zero under any widget section, the frames of that widget will be expanded until the corner
frames meet each other either horizontally or vertically, depending on the aspect ratio of the actual
widget, provided that at least the height or the width of the actual widget is less than or equal to the
value of “frame.expansion”. The expansion is so that the corner frame objects become equal squares
even when they are not drawn as SVG squares.

You could use this key to make widget corners as rounded as possible. By giving a positive value to
“frame.expansion”, you could not only decide which widgets have extremely rounded corners but also
set size limits, beyond which, they should have ordinary corners (because too big widgets would look
weird with completely rounded corners).

The SVG objects used for drawing the completely rounded corners can be the usual ones, in which case
you would not need to add anything to your SVG image. But, except for totally flat objects (which do
not have color gradient), you might want to add extra objects for maximally rounded widgets. If so, you
should name them by adding the prefix “expand-” to the beginning of the usual object names. For

example, for maximally rounded buttons with the frame element named as “button” under the
PanelButtonCommand section, the names of the objects that are used specifically for complete
rounding are “expand-button-normal-top”, “expand-button-normal-topleft”, “expand-button-normal-
topright”, …, “expand-button-focused-top”, “expand-button-focused-topleft”, “expand-button-
focused-topright”, etc. The interior, left or right objects are not used in drawing and you do not need to
include them. However, Kvantum looks for the top objects (whose names end with “-top”) and only if
it founds them, it will use the other “expand-” objects. Of course, you should draw the corner objects
rounded and give all objects appropriate color gradients if any.

In case of “expand-” objects, the color gradients of opposite frame objects should be complementary,
so that when they are adjacent to each other due to frame expansion, a smooth gradient is created.

The following image can serve as an example:

As you can see, in the above image, there are no objects for the interior, the right frame or the left
frame. It is obvious why the interior object is redundant. As for the right and left frames, if the height of
widget is greater than its width, Kvantum will rotate its rectangle by 90 degrees, draw it by using the
available objects and then rotate it by 90 degrees again but in the opposite direction, so that right and
left objects will not be needed (this is only a rough description). The reason is that the widget looks
more natural in this way. That being said, if the widget in question is grouped with similar ones – as
with grouped toolbar buttons – the rotation cannot be done and the frame expansion will not happen
when only the height is greater than the value of “frame.expansion”.

Although the interior object (alongside the left and right ones) is not used in this, if it exists and if its
base name is identical to the frame element name, the corners of those widgets, whose heights and
widths are greater than the value of “frame.expansion”, will also be rounded but not maximally. This
can be called “partial frame expansion”.

Kvantum looks for the “expand-” interior object to do partial frame expansion. If, in addition, it finds
the “expand-” top frame object, it will only use the “expand-” objects for partial frame expansion;
otherwise, the usual objects will be used.

This feature is especially useful when you want rounder corners with the usual objects but
without increasing the frame thickness. For that purpose, you could just add a black rectangle for the
“expand-” interior object to inform Kvantum that you want partial expansion (the color is not
important). Then, Kvantum will use your usual frame objects for partial frame expansion, according to

expand-button-normal-topleft expand-button-normal-topright

expand-button-normal-top

expand-button-normal-bottom

expand-button-normal-bottomleft expand-button-normal-bottomright

the value of the key “frame.expansion” in the configuration file.

The theme “KvSimplicity”, which is installed among the extra themes, contains an example of the
above-mentioned feature. Its buttons have 3-px thick frames but their corner roundness is what 5-px
frames could afford (frame.expansion=10).

Of course, all “expand-” objects can also be added to the SVG image, such that they are used, instead
of the usual objects, for partial frame expansion. Anyway, even if you add all “expand-” objects, never
remove the usual objects because they will be needed in some places!

The key “frame.expansion” can also be used for purposes other than corner rounding. The main idea is
to make the corner objects as big as possible so that the left and right (or top and bottom) sides of
widgets get their shapes.

Please also note that:

(a) Sliders, scrollbars, header sections and container widgets (menus and tab widgets, for example, but
not menu-items or tabs) do not support frame expansion. You could still round the edges of sliders and
scrollbars by not giving them any interior, drawing appropriate images for their corner frames, and
choosing their left and right frame widths equal to half of their widths. If you do so, it is better that you
also set their widths to even numbers. However, tab widgets (under the section TabFrame) whose tabs
are not attached to them (attach_active_tab=false) and also group-boxes whose labels are above their
frames (groupbox_top_label=true) can have frame expansion,

(b) View items (under the ItemView section) can only be partially rounded and so, their “expand-”
interior object should be present for frame expansion. Also, the value of “frame.expansion” is limited
to half their height (when they are horizontal).

(c) Some instances of other widgets may fall back to the usual SVG objects under certain conditions
(lack of space, for example).

* * *
Frame expansion may seem complex at first but it can be summarized as follows:

1. With all “expand-” frame objects present, if the widget height is less than “frame.expansion”,
the corners will be completely rounded.

2. With the “expand-” interior object, if the widget height is greater than “frame.expansion” and
the interior element has the base name of the frame element, the frame will be partially rounded.
In this case, if the “expand-” top frame object is missing, the usual objects will be used for frame
expansion.

Frame Expansion and Border

Since, in the case of frame expansion, the frames themselves are expanded, they cannot serve as a
border anymore. When the “expand-” objects have gradient, there is no need to a border, although
widgets may look more elegant with it. But, when they are flat, a border may be really needed.

However, there is a way to give the completely (or partially) rounded widgets a nice border. That is
done by using the “border-” objects. They are exactly like the “expand-” objects except for their
names, which are started with the string “border-”, and their background color, which is the color of
the desired border. Although their shapes should be identical to the shapes of their corresponding
“expand-” objects, Kvantum uses them to make a border by making the “expand-” objects a little
smaller and putting them inside the “border-” objects. The thickness of the resulting border is equal to
the expanded frame width – or to the ordinary frame width when there is no expanded frame size in the
configuration file (see the explanation of frame.expanded.top,..., frame.expanded.right in the sections
table of Theme-Config.pdf).

Again, if the interior, left and right “border-” objects also exist alongside the interior, left and right
“expand-” objects, not only the corners of those widgets, whose heights and widths are greater than the
value of “frame.expansion”, will be partially rounded, but also they will have border.

The themes “KvCurves”, “KvCurves3d” and “KvCurvesLight”, which are installed among the extra
themes, are good examples for frame expansion with border.

Dealing with exceptions

Before Kvantum was created, many developers wrongly presupposed fixed values for some QStyle
parameters and used them in the hard-coded styles of their applications. This is still the case. For
example, the frame thickness may be considered to be only 3px, although it can have different sizes for
different kinds of widgets and even on the top, bottom, right and left of the same widget.

A hard-coded style will be correct only if it is complete and does not include any false presupposition
about QStyle parameters. For example, if it sets the foreground color, it should also set the background
color; otherwise, some texts will not be readable with some styles. Unfortunately, there are many
exceptions in this regard and some developers do not use QStyle correctly in their applications.

Kvantum deals with such exceptional cases as far as possible. For example, if the foreground is set but
it is not readable, Kvantum might correct it or set an appropriate background. Or if there is not enough
space for drawing the text of a button, Kvantum will set the frame widths to 3px and the text margins to
2px for it, although those values may be greater in the active Kvantum theme.

However, Kvantum could not deal with all exceptional cases if the theme is not ready for them. There
are simple rules that can make most applications with wrong hard-coded styles look good enough:

(1) Under GeneralColors, avoid a high contrast between text.color and window.text.color – which
means that base.color and window.color should not have a high contrast with each other either.
Although there is nothing in QStyle disallowing a high contrast between base and window colors, the
current implementations of SVG symbolic icons presuppose the lack of it. Moreover, some hard-coded
styles may have problems with a high contrast in this case.

(2) Under the ItemView section, set text.press.color and text.toggle.color in such a way that they do not
have a high contrast with highlighted.text.color under the GeneralColors section. The reason is that it
may be supposed that all of these colors are the same. Although that is not enforced by QStyle, some
hard-coded styles may need it.

Also, set text.normal.color and text.focus.color for ItemView in such a way that they do not have a high
contrast with text.color under GeneralColors and use a translucent (semi-transparent) background for
the focused interior SVG element of ItemView in the SVG file.

If you use inactive colors in your theme, set text.toggle.inactive.color for ItemView to some value near
inactive.highlighted.text.color under GeneralColors (both keys should be defined if inactiveness is
used) and add appropriate SVG elements for toggled-inactive ItemView to the SVG file.

(3) Include SVG elements that look good with a 3px frame thickness. If you use frame expansion, add
non-expanded SVG elements for all button-like widgets and line-edits too because Kvantum may
disable their frame expansion under certain circumstances created by bad hard-coded styles. If you use
the usual SVG elements with frame expansion and if they are not suitable with a 3px frame thickness,
you could use frame.expandedElement in addition to frame.element and give a 3px frame to the latter.
You could also use frame.expanded.top/bottom… in addition to frame.top/bottom….

(4) Do not forget to add appropriate flat indicators (arrows). They are also needed with good hard-
coded styles when highlight.color – under GeneralColors – has a high contrast with base.color.

Theme Installation Paths

The default user installation path, which Kvantum Manager uses, is always
‘~/.config/Kvantum/$THEME_NAME/’, and the default root installation path, used by Kvantum’s extra
themes, is ‘$DATADIR/Kvantum/$THEME_NAME/’ ($DATADIR is often ‘/usr/share’ but depends on
the Kvantum installation prefix).

To make theme packaging easier, three extra installation paths are (unwillingly) added too, namely,
‘~/.themes/$THEME_NAME/Kvantum/’, ‘~/.local/share/themes/$THEME_NAME/Kvantum/’ and
‘$DATADIR/themes/$THEME_NAME/Kvantum/’.

Kvantum uses the concept of priority for theme installation. If the same theme is installed in more than
one path, the one whose path has the highest priority will be used. The user paths always take priority
over the root ones. All paths, arranged in the order of their priorities from high to low, are as follows:

~/.config/Kvantum/$THEME_NAME/
~/.themes/$THEME_NAME/Kvantum/
~/.local/share/themes/$THEME_NAME/Kvantum/
$DATADIR/Kvantum/$THEME_NAME/
$DATADIR/themes/$THEME_NAME/Kvantum/

Because of this hierarchy, if you manually remove a Kvantum theme, it might still be shown on the list
of installed themes by Kvantum Manager. Also, if you manually install a newer version of a theme, an
older version with a higher priority might still be used. However, if you install a theme with Kvantum
Manager, it will always take priority over its other installations.

Therefore, in the case of theme installation or updating without Kvantum Manager, it is better first to
delete the same theme with Kvantum Manager if it is already installed because Kvantum Manager

takes into account all user installation paths when deleting a theme.

A Word about SVG Symbolic Icons

Kvantum recognizes SVG symbolic icons, which include style-sheets and change color to have enough
contrast with their backgrounds, but since Kvantum is not limited to any desktop environment, it can
have themes that are not compatible with those symbolic icons.

Therefore, if you want your dark-and-light theme to be compatible with SVG symbolic icons, you
should choose highlight.text.color, under the GeneralColors section, in such a way that it does not
have a high contrast with window.color (which means that it has a high contrast with
window.text.color). Of course, you should also choose an appropriate value for highlight.color and deal
with the item-view text colors.

The colors of symbolic SVG icons are determined based on the state-specific text colors under the
relevant section. If the text color of a widget in a certain state has a high contrast with window.color,
the color of its symbolic SVG icons in that state will be window.text.color; otherwise, it will be
highlight.text.color.

“High contrast” is calculated by Kvantum based on the concepts of “minimum contrast ratio” and
“color luminance”.

Dark variants of themes

Some light themes may come with their dark variants. For example, KvSimplicity (which is included in
Kvantum) has a dark variant called KvSimplicityDark. If a theme has a dark variant, it will be better to
name the latter by adding the suffix “Dark” to the name of the former and also set the key
dark_titlebar to true for it under the General section. The reason is threefold: (1) The user could find
the dark variant of a light theme more easily; (2) Qt applications could use the dark variant of an active
light theme when, for example, they are started with the command-line option “-style kvantum-dark”;
and (3) under GTK environments like Gnome, the title-bar will be dark for dark variants automatically.

Instead of being separate themes, dark variants could be included in their corresponding light themes if
their names end with “Dark”, so that a light theme folder with the name “My_Theme” may contain all
of these files:

My_Theme.svg (the light SVG image)
My_Theme.kvconfig (the light Kvantum configuration file)
My_ThemeDark.svg (the dark SVG image)
My_ThemeDark.kvconfig (the dark Kvantum configuration file)

The dark variants that are separate themes with their own theme folders take priority over those
included in their corresponding light folders, so that if “My_ThemeDark” is both a separate theme and
included in “My_Theme”, only the former will be picked up by Kvantum.

A word about QML/Qt Quick

Some Qt apps may have been written in QML by using Qt Quick. Such apps do not have real Qt
widgets and cannot be styled by a Qt widget style appropriately. With elementary styles, the visible
difference between QML and real Qt apps may be small; with Kvantum, it is quite tangible: QML apps
usually have ugly appearances compared to real Qt apps and lack many features.

KDE developers have tried to eliminate the difference to no avail. Actually, it is impossible to do so
because Qt Quick does not have QWidget. Introducing QML/Qt Quick GUIs into a desktop
environment like KDE was a bad idea from the beginning because, among other things, they damage
platform integration – they may be good for mobile phones but not for a desktop environment. They
have their own styling, which is incompatible with QStyle.

Nothing can be done by Kvantum for QML apps because Kvantum is a Qt widget style. KDE
developers are responsible for discrepancies.

Qt developers have promised a better integration in Qt 6. We should wait to see.

* * *

Anyway, by renaming “default.svg” to “MY_THEME.svg”, putting it alongside the file
“MY_THEME .kvconfig” in “~/.config/Kvantum/MY_THEME”, and playing with them, you could
learn more about theme-making than by reading any document.

After every change you make to the SVG image or configuration file, you could see how various
widgets look by clicking on the Preview button of Kvantum Manager or by entering the command
kvantumpreview in terminal.

	Elements
	Interior and Frames
	Indicators
	“Flat” Indicators and High Contrast
	Menu and Item Check Boxes and Radio Buttons
	States
	Orientations
	Inactiveness
	The Default (Push) Button
	Toolbar Buttons
	Grouped Toolbar Buttons and Separators
	Inheritance and Alignment
	Patterns
	Tinting Colors
	Junctions between Attached Active Tabs and Tab Widgets
	“Floating” Tabs
	Joined Tabs and Tab Separators
	Translucency and Shadow for Menus and Tooltips
	Blurring for Menus and Tooltips:
	“Shadow Hint” Rectangles
	* * *
	* * *
	Window Translucency
	Maximum Corner Roundness
	and Frame Expansion
	* * *
	Frame Expansion and Border
	Dealing with exceptions
	Theme Installation Paths
	A Word about SVG Symbolic Icons
	Dark variants of themes
	A word about QML/Qt Quick
	* * *

