
Internet Research Task Force (IRTF) M. Mosko
Request for Comments: 8569 PARC, Inc.
Category: Experimental I. Solis
ISSN: 2070-1721 LinkedIn
 C. Wood
 University of California Irvine
 July 2019

 Content-Centric Networking (CCNx) Semantics

Abstract

 This document describes the core concepts of the Content-Centric
 Networking (CCNx) architecture and presents a network protocol based
 on two messages: Interests and Content Objects. It specifies the set
 of mandatory and optional fields within those messages and describes
 their behavior and interpretation. This architecture and protocol
 specification is independent of a specific wire encoding.

 The protocol also uses a control message called an Interest Return,
 whereby one system can return an Interest message to the previous hop
 due to an error condition. This indicates to the previous hop that
 the current system will not respond to the Interest.

 This document is a product of the Information-Centric Networking
 Research Group (ICNRG). The document received wide review among
 ICNRG participants. Two full implementations are in active use and
 have informed the technical maturity of the protocol specification.

Mosko, et al. Experimental [Page 1]

RFC 8569 CCNx Semantics July 2019

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Research Task
 Force (IRTF). The IRTF publishes the results of Internet-related
 research and development activities. These results might not be
 suitable for deployment. This RFC represents the consensus of the
 Information-Centric Networking Research Group of the Internet
 Research Task Force (IRTF). Documents approved for publication by
 the IRSG are not candidates for any level of Internet Standard; see
 Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8569.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Mosko, et al. Experimental [Page 2]

RFC 8569 CCNx Semantics July 2019

Table of Contents

 1. Introduction . 4
 1.1. Requirements Language 5
 1.2. Architecture . 5
 1.3. Protocol Overview . 6
 2. Protocol . 10
 2.1. Message Grammar . 10
 2.2. Consumer Behavior . 14
 2.3. Publisher Behavior 15
 2.4. Forwarder Behavior 16
 2.4.1. Interest HopLimit 16
 2.4.2. Interest Aggregation 17
 2.4.3. Content Store Behavior 19
 2.4.4. Interest Pipeline 19
 2.4.5. Content Object Pipeline 20
 3. Names . 21
 3.1. Name Examples . 23
 3.2. Interest Payload ID 23
 4. Cache Control . 23
 5. Content Object Hash . 24
 6. Link . 24
 7. Hashes . 25
 8. Validation . 25
 8.1. Validation Algorithm 25
 8.2. Message Integrity Codes 26
 8.3. Message Authentication Codes 26
 8.4. Signature . 26
 9. Interest to Content Object Matching 28
 10. Interest Return . 29
 10.1. Message Format . 30
 10.2. ReturnCode Types . 31
 10.3. Interest Return Protocol 32
 10.3.1. No Route . 32
 10.3.2. HopLimit Exceeded 33
 10.3.3. Interest MTU Too Large 33
 10.3.4. No Resources . 33
 10.3.5. Path Error . 33
 10.3.6. Prohibited . 33
 10.3.7. Congestion . 34
 10.3.8. Unsupported Content Object Hash Algorithm 34
 10.3.9. Malformed Interest 34
 11. IANA Considerations . 34
 12. Security Considerations 34
 13. References . 37
 13.1. Normative References 37
 13.2. Informative References 37
 Authors’ Addresses . 40

Mosko, et al. Experimental [Page 3]

RFC 8569 CCNx Semantics July 2019

1. Introduction

 This document describes the principles of the CCNx architecture. It
 describes a network protocol that uses a hierarchical name to forward
 requests and to match responses to requests. It does not use
 endpoint addresses, such as Internet Protocol. Restrictions in a
 request can limit the response by the public key of the response’s
 signer or the cryptographic hash of the response. Every CCNx
 forwarder along the path does the name matching and restriction
 checking. The CCNx protocol fits within the broader framework of
 Information-Centric Networking (ICN) protocols [RFC7927]. This
 document concerns the semantics of the protocol and is not dependent
 on a specific wire encoding. The CCNx Messages [RFC8609] document
 describes a type-length-value (TLV) wire-protocol encoding. This
 section introduces the main concepts of CCNx, which are further
 elaborated in the remainder of the document.

 The CCNx protocol derives from the early ICN work by Jacobson, et al.
 [nnc]. Jacobson’s version of CCNx is known as the 0.x version ("CCNx
 0.x"), and the present work is known as the 1.0 version ("CCNx 1.0").
 There are two active implementations of CCNx 1.0. The most complete
 implementation is Community ICN (CICN) [cicn], a Linux Foundation
 project hosted at fd.io. Another active implementation is CCN-lite
 [ccn-lite], with support for Internet of Things (IoT) systems and the
 RIOT operating system. CCNx 0.x formed the basis of the Named Data
 Networking (NDN) [ndn] university project.

 The current CCNx 1.0 specification diverges from CCNx 0.x in a few
 significant areas. The most pronounced behavioral difference between
 CCNx 0.x and CCNx 1.0 is that CCNx 1.0 has a simpler response
 processing behavior. In both versions, a forwarder uses a
 hierarchical longest prefix match of a request name against the
 forwarding information base (FIB) to send the request through the
 network to a system that can issue a response. A forwarder must then
 match a response’s name to a request’s name to determine the reverse
 path and deliver the response to the requester. In CCNx 0.x, the
 Interest name may be a hierarchical prefix of the response name,
 which allows a form of Layer 3 (L3) content discovery. In CCNx 1.0,
 a response’s name must exactly equal a request’s name. Content
 discovery is performed by a higher-layer protocol.

 The selector protocol "CCNx Selectors" [selectors] is an example of
 using a higher-layer protocol on top of the CCNx 1.0 L3 to perform
 content discovery. The selector protocol uses a method similar to
 the original CCNx 0.x techniques without requiring partial name
 matching of a response to a request in the forwarder.

Mosko, et al. Experimental [Page 4]

RFC 8569 CCNx Semantics July 2019

 This document represents the consensus of the Information-Centric
 Networking Research Group (ICNRG). It is the first ICN protocol from
 the RG, created from the early CCNx protocol [nnc] with significant
 revision and input from the ICN community and RG members. This
 document has received critical reading by several members of the ICN
 community and the RG. The authors and RG chairs approve of the
 contents. This document is sponsored under the IRTF, is not issued
 by the IETF, and is not an IETF standard. This is an experimental
 protocol and may not be suitable for any specific application. The
 specification may change in the future.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Architecture

 We describe the architecture of the network in which CCNx operates
 and introduce certain terminology from [terminology]. The detailed
 behavior of each component and message grammar is in Section 2.

 A producer (also called a "publisher") is an endpoint that
 encapsulates content in Content Objects for transport in the CCNx
 network. A producer has a public/private keypair and signs (directly
 or indirectly) the Content Objects. Usually, the producer’s KeyId
 (hash of the public key) is well known or may be derived from the
 producer’s namespace via standard means.

 A producer operates within one or more namespaces. A namespace is a
 name prefix that is represented in the forwarding information base
 (FIB). This allows a request to reach the producer and fetch a
 response (if one exists).

 The FIB is a table that tells a forwarder where to send a request.
 It may point to a local application, a local cache or Content Store,
 or to a remote system. If there is no matching entry in the FIB, a
 forwarder cannot process a request. The detailed rules on name
 matching to the FIB are given in Section 2.4.4. An endpoint has a
 FIB, though it may be a simple default route. An intermediate system
 (i.e., a router) typically has a much larger FIB. A core CCNx
 forwarder, for example, would know all the global routes.

Mosko, et al. Experimental [Page 5]

RFC 8569 CCNx Semantics July 2019

 A consumer is an endpoint that requests a name. It is beyond the
 scope of this document to describe how a consumer learns of a name or
 publisher KeyId; higher-layer protocols built on top of CCNx handle
 those tasks, such as search engines or lookup services or well-known
 names. The consumer constructs a request, called an Interest, and
 forwards it via the endpoint’s FIB. The consumer should get back
 either a response (called a Content Object) that matches the Interest
 or a control message (called an Interest Return) that indicates the
 network cannot handle the request.

 There are three ways to detect errors in Interest handling. An
 Interest Return is a network control message that indicates a low-
 level error like "no route" or "out of resources". If an Interest
 arrives at a producer, but the producer does not have the requested
 content, the producer should send an application-specific error
 message (e.g., a "not found" message). Finally, a consumer may not
 receive anything; in which case, it should timeout and, depending on
 the application, retry the request or return an error to the
 application.

1.3. Protocol Overview

 The goal of CCNx is to name content and retrieve the content from the
 network without binding it to a specific network endpoint. A routing
 system (specified separately) populates the FIB tables at each CCNx
 router with hierarchical name prefixes that point towards the content
 producers under that prefix. A request finds matching content along
 those paths, in which case a response carries the data, or, if no
 match is found, a control message indicates the failure. A request
 may further refine acceptable responses with a restriction on the
 response’s signer and the cryptographic hash of the response. The
 details of these restrictions are described below.

 The CCNx name is a hierarchical series of name segments. Each name
 segment has a type and zero or more bytes. Matching two names is
 done as a binary comparison of the type and value, and is done
 segment by segment. The human-readable form is defined under a URI
 scheme "ccnx:" [ccnx-uri], though the canonical encoding of a name is
 a series of pairs (type, octet string). There is no requirement that
 any name segment be human readable or UTF-8. The first few segments
 in a name will be matched against the FIB, and a routing protocol may
 put its own restrictions on the routable name components (e.g., a
 maximum length or character-encoding rules). In principle, name
 segments and names have unbounded length, though in practice they are
 limited by the wire encoding and practical considerations imposed by
 a routing protocol. Note that in CCNx, name segments use binary
 comparison, whereas in a URI, the authority uses a case-insensitive
 hostname (due to DNS).

Mosko, et al. Experimental [Page 6]

RFC 8569 CCNx Semantics July 2019

 The CCNx name, as used by the forwarder, is purposefully left as a
 general octet-encoded type and value without any requirements on
 human readability and character encoding. The reason for this is
 that we are concerned with how a forwarder processes names. We
 expect that applications, routing protocols, or other higher layers
 will apply their own conventions and restrictions on the allowed name
 segment types and name segment values.

 CCNx is a request and response protocol that fetches chunks of data
 using a name. The integrity of each chunk may be directly asserted
 through a digital signature or Message Authentication Code (MAC), or,
 alternatively, indirectly via hash chains. Chunks may also carry
 weaker Message Integrity Codes (MICs) or no integrity protection
 mechanism at all. Because provenance information is carried with
 each chunk (or larger indirectly protected block), we no longer need
 to rely on host identities, such as those derived from TLS
 certificates, to ascertain the chunk legitimacy. Therefore, data
 integrity is a core feature of CCNx; it does not rely on the data
 transmission channel. There are several options for data
 confidentiality, discussed later.

 This document only defines the general properties of CCNx names. In
 some isolated environments, CCNx users may be able to use any name
 they choose and either inject that name (or prefix) into a routing
 protocol or use other information foraging techniques. In the
 Internet environment, there will be policies around the formats of
 names and assignments of names to publishers, though those are not
 specified here.

 The key concept of CCNx is that a subjective name is
 cryptographically bound to a fixed payload. These publisher-
 generated bindings can therefore be cryptographically verified. A
 named payload is thus the tuple {{Name, ExtraFields, Payload,
 ValidationAlgorithm}, ValidationPayload}, where all fields in the
 inner tuple are covered by the validation payload (e.g., signature).
 Consumers of this data can check the binding integrity by recomputing
 the same cryptographic hash and verifying the digital signature in
 ValidationPayload.

 In addition to digital signatures (e.g., RSA), CCNx also supports
 message authentication codes (e.g., Hashed Message Authentication
 Code (HMAC)) and message integrity codes (e.g., Cyclic Redundancy
 Checks (CRC)). To maintain the cryptographic binding, there should
 be at least one object with a signature or authentication code, but
 not all objects require it. For example, a first object with a
 signature could refer to other objects via a hash chain, a Merkle
 tree, or a signed manifest. The later objects may not have any

Mosko, et al. Experimental [Page 7]

RFC 8569 CCNx Semantics July 2019

 validation and rely purely on the references. The use of an
 integrity code (e.g., CRC) is intended for detecting accidental
 corruption in an Interest.

 CCNx specifies a network protocol around Interests (request messages)
 and Content Objects (response messages) to move named payloads. An
 Interest includes the Name field, which identifies the desired
 response, and optional matching restrictions. Restrictions limit the
 possible matching Content Objects. Two restrictions exist: the Key
 ID restriction (KeyIdRestr) and Content Object Hash restriction
 (ContentObjectHashRestr). The first restriction on the KeyId limits
 responses to those signed with a ValidationAlgorithm KeyId field
 equal to the restriction. The second is the Content Object Hash
 restriction, which limits the response to one where the cryptographic
 hash of the entire named payload is equal to the restriction.
 Section 9 fully explains how these restrictions limit matching of a
 Content Object to an Interest.

 The hierarchy of a CCNx name is used for routing via the longest
 matching prefix in a forwarder. The longest matching prefix is
 computed name segment by name segment in the hierarchical name, where
 each name segment must be exactly equal to match. There is no
 requirement that the prefix be globally routable. Within a
 deployment, any local routing may be used, even one that only uses a
 single flat (nonhierarchical) name segment.

 Another concept of CCNx is that there should be flow balance between
 Interest messages and Content Object messages. At the network level,
 an Interest traveling along a single path should elicit no more than
 one Content Object response. If some node sends the Interest along
 more than one path, that node should consolidate the responses such
 that only one Content Object flows back towards the requester. If an
 Interest is sent broadcast or multicast on a multiple-access media,
 the sender should be prepared for multiple responses unless some
 other media-dependent mechanism like gossip suppression or leader
 election is used.

 As an Interest travels the forward path following the FIB, it
 establishes state at each forwarder such that a Content Object
 response can trace its way back to the original requester(s) without
 the requester needing to include a routable return address. We use
 the notional Pending Interest Table (PIT) as a method to store state
 that facilitates the return of a Content Object.

 The notional PIT stores the last hop of an Interest plus its Name
 field and optional restrictions. This is the data required to match
 a Content Object to an Interest (see Section 9). When a Content

Mosko, et al. Experimental [Page 8]

RFC 8569 CCNx Semantics July 2019

 Object arrives, it must be matched against the PIT to determine which
 entries it satisfies. For each such entry, at most one copy of the
 Content Object is sent to each listed last hop in the PIT entries.

 An actual PIT is not mandated by this specification. An
 implementation may use any technique that gives the same external
 behavior. There are, for example, research papers that use
 techniques like label switching in some parts of the network to
 reduce the per-node state incurred by the PIT [dart]. Some
 implementations store the PIT state in the FIB, so there is not a
 second table.

 If multiple Interests with the same {Name, [KeyIdRestr],
 [ContentObjectHashRestr]} tuple arrive at a node before a Content
 Object matching the first Interest comes back, they are grouped in
 the same PIT entry and their last hops are aggregated (see
 Section 2.4.2). Thus, one Content Object might satisfy multiple
 pending Interests in a PIT.

 In CCNx, higher-layer protocols are often called "name-based
 protocols" because they operate on the CCNx name. For example, a
 versioning protocol might append additional name segments to convey
 state about the version of payload. A content discovery protocol
 might append certain protocol-specific name segments to a prefix to
 discover content under that prefix. Many such protocols may exist
 and apply their own rules to names. They may be layered with each
 protocol encapsulating (to the left) a higher layer’s name prefix.

 This document also describes a control message called an Interest
 Return. A network element may return an Interest message to a
 previous hop if there is an error processing the Interest. The
 returned Interest may be further processed at the previous hop or
 returned towards the Interest origin. When a node returns an
 Interest, it indicates that the previous hop should not expect a
 response from that node for the Interest, i.e., there is no PIT entry
 left at the returning node for a Content Object to follow.

 There are multiple ways to describe larger objects in CCNx.
 Aggregating L3 Content Objects into larger objects is beyond the
 scope of this document. One proposed method, File-Like ICN
 Collection (FLIC) [flic], uses a manifest to enumerate the pieces of
 a larger object. Manifests are, themselves, Content Objects.
 Another option is to use a convention in the Content Object name, as
 in the CCNx Chunking [chunking] protocol where a large object is
 broken into small chunks and each chunk receives a special name
 component indicating its serial order.

Mosko, et al. Experimental [Page 9]

RFC 8569 CCNx Semantics July 2019

 At the semantic level, described in this document, we do not address
 fragmentation. One experimental fragmentation protocol, BeginEnd
 Fragments [befrags], uses a multipoint PPP-style technique for use
 over L2 interfaces with the specification for CCNx Messages [RFC8609]
 in TLV wire encoding.

 With these concepts, the remainder of the document specifies the
 behavior of a forwarder in processing Interest, Content Object, and
 Interest Return messages.

2. Protocol

 This section defines the grammar of a CCNx Message (Interest, Content
 Object, or Interest Return). It then presents typical behaviors for
 a consumer, a publisher, and a forwarder. In the forwarder section,
 there are detailed descriptions about how to handle the forwarder-
 specific topics, such as HopLimit and Content Store, along with
 detailed processing pipelines for Interest and Content Object
 messages.

2.1. Message Grammar

 The CCNx Message ABNF [RFC5234] grammar is shown in Figure 1. The
 grammar does not include any encoding delimiters, such as TLVs.
 Specific wire encodings are given in a separate document. If a
 Validation section exists, the Validation Algorithm covers from the
 Body (BodyName or BodyOptName) through the end of the ValidationAlg
 section. The InterestLifetime, CacheTime, and Return Code fields
 exist outside of the validation envelope and may be modified.

 HashType, PayloadType, and Private Enterprise Number (PEN) need to
 correspond to IANA values registered in the "CCNx Hash Function
 Types" and "CCNx Payload Types" registries [ccnx-registry], as well
 as the "Private Enterprise Numbers" registry [eprise-numbers],
 respectively.

 The various fields, in alphabetical order, are defined as:

 AbsTime: Absolute times are conveyed as the 64-bit UTC time in
 milliseconds since the epoch (standard POSIX time).

 CacheTime: The absolute time after which the publisher believes
 there is low value in caching the Content Object. This is a
 recommendation to caches (see Section 4).

 Cert: Some applications may wish to embed an X.509 certificate to
 both validate the signature and provide a trust anchor. The Cert
 is a DER-encoded X.509 certificate.

Mosko, et al. Experimental [Page 10]

RFC 8569 CCNx Semantics July 2019

 ConObjField: These are optional fields that may appear in a Content
 Object.

 ConObjHash: The value of the Content Object Hash, which is the
 SHA256-32 over the message from the beginning of the body to the
 end of the message. Note that this coverage area is different
 from the ValidationAlg. This value SHOULD NOT be trusted across
 domains (see Section 5).

 ContentObjectHashRestr: The Content Object Hash restriction. A
 Content Object must hash to the same value as the restriction
 using the same HashType. The ContentObjectHashRestr MUST use
 SHA256-32.

 ExpiryTime: An absolute time after which the Content Object should
 be considered expired (see Section 4).

 Hash: Hash values carried in a Message carry a HashType to identify
 the algorithm used to generate the hash followed by the hash
 value. This form is to allow hash agility. Some fields may
 mandate a specific HashType.

 HashType: The algorithm used to calculate a hash, which must
 correspond to one of the IANA "CCNx Hash Function Types"
 [ccnx-registry].

 HopLimit: Interest messages may loop if there are loops in the
 forwarding plane. To eventually terminate loops, each Interest
 carries a HopLimit that is decremented after each hop and no
 longer forwarded when it reaches zero. See Section 2.4.

 InterestField: These are optional fields that may appear in an
 Interest message.

 KeyId: An identifier for the key used in the ValidationAlg. See
 Validation (Section 8) for a description of how it is used for
 MACs and signatures.

 KeyIdRestr: The KeyId Restriction. A Content Object must have a
 KeyId with the same value as the restriction.

 KeyLink: A Link (see Section 6) that names how to retrieve the key
 used to verify the ValidationPayload (see Section 8).

 Lifetime: The approximate time during which a requester is willing
 to wait for a response, usually measured in seconds. It is not
 strongly related to the network round-trip time, though it must
 necessarily be larger.

Mosko, et al. Experimental [Page 11]

RFC 8569 CCNx Semantics July 2019

 Name: A name is made up of a nonempty first segment followed by zero
 or more additional segments, which may be of 0 length. Name
 segments are opaque octet strings and are thus case sensitive if
 encoding UTF-8. An Interest MUST have a Name. A Content Object
 MAY have a Name (see Section 9). The segments of a name are said
 to be complete if its segments uniquely identify a single Content
 Object. A name is exact if its segments are complete. An
 Interest carrying a full name is one that specifies an exact name
 and the Content Object Hash restriction of the corresponding
 Content Object.

 Payload: The message’s data, as defined by PayloadType.

 PayloadType: The format of the Payload field. If missing, assume
 Data type (T_PAYLOADTYPE_DATA) [ccnx-registry]. Data type means
 the payload is opaque application bytes. Key type
 (T_PAYLOADTYPE_KEY [ccnx-registry]) means the payload is a DER-
 encoded public key or X.509 certificate. Link type
 (T_PAYLOADTYPE_LINK [ccnx-registry]) means it is one or more Links
 (see Section 6).

 PublicKey: Some applications may wish to embed the public key used
 to verify the signature within the message itself. The PublickKey
 is DER encoded.

 RelTime: A relative time, measured in milliseconds.

 ReturnCode: States the reason an Interest message is being returned
 to the previous hop (see Section 10.2).

 SigTime: The absolute time (UTC milliseconds) when the signature was
 generated. The signature time only applies to the validation
 algorithm; it does not necessarily represent when the validated
 message was created.

 Vendor: Vendor-specific opaque data. The Vendor data includes the
 IANA Private Enterprise Numbers [eprise-numbers], followed by
 vendor-specific information. CCNx allows vendor-specific data in
 most locations of the grammar.

 Message = Interest / ContentObject / InterestReturn
 Interest = IntHdr BodyName [Validation]
 IntHdr = HopLimit [Lifetime] *Vendor
 ContentObject = ConObjHdr BodyOptName [Validation]
 ConObjHdr = [CacheTime / ConObjHash] *Vendor
 InterestReturn= ReturnCode Interest
 BodyName = Name Common
 BodyOptName = [Name] Common

Mosko, et al. Experimental [Page 12]

RFC 8569 CCNx Semantics July 2019

 Common = *Field [Payload]
 Validation = ValidationAlg ValidationPayload

 Name = FirstSegment *Segment
 FirstSegment = 1*OCTET / Vendor
 Segment = *OCTET / Vendor

 ValidationAlg = (RSA-SHA256 / EC-SECP-256K1 / EC-SECP-384R1 /
 HMAC-SHA256 / CRC32C) *Vendor
 ValidationPayload = 1*OCTET
 PublicAlg = KeyId [SigTime] [KeyLink] [PublicKey] [Cert]
 RSA-SHA256 = PublicAlg
 EC-SECP-256K1 = PublicAlg
 EC-SECP-384R1 = PublicAlg
 HMAC-SHA256 = KeyId [SigTime] [KeyLink]
 CRC32C = [SigTime]

 AbsTime = 8OCTET ; 64-bit UTC msec since epoch
 CacheTime = AbsTime
 ConObjField = ExpiryTime / PayloadType
 ConObjHash = Hash
 ExpiryTime = AbsTime
 Field = InterestField / ConObjField / Vendor
 Hash = HashType 1*OCTET
 HashType = 2OCTET ; IANA "CCNx Hash Function Types"
 HopLimit = OCTET
 InterestField = KeyIdRestr / ContentObjectHashRestr
 KeyId = Hash
 KeyIdRestr = Hash
 KeyLink = Link
 Lifetime = RelTime
 Link = Name [KeyIdRestr] [ContentObjectHashRestr]
 ContentObjectHashRestr = Hash
 Payload = *OCTET
 PayloadType = OCTET ; IANA "CCNx Payload Types"
 PublicKey = *OCTET ; DER-encoded public key
 Cert = *OCTET ; DER-encoded X.509 Certificate
 RelTime = 1*OCTET ; msec
 ReturnCode = OCTET ; see Section 10.2
 SigTime = AbsTime
 Vendor = PEN *OCTET
 PEN = 1*OCTET ; IANA "Private Enterprise Number"

 Figure 1: CCNx Message ABNF Grammar

Mosko, et al. Experimental [Page 13]

RFC 8569 CCNx Semantics July 2019

2.2. Consumer Behavior

 To request a piece of content for a given {Name, [KeyIdRest],
 [ContentObjectHashRestr]} tuple, a consumer creates an Interest
 message with those values. It MAY add a validation section,
 typically only a CRC32C. A consumer MAY put a Payload field in an
 Interest to send additional data to the producer beyond what is in
 the name. The name is used for routing and may be remembered at each
 hop in the notional PIT to facilitate returning a Content Object;
 storing large amounts of state in the name could lead to high memory
 requirements. Because the payload is not considered when forwarding
 an Interest or matching a Content Object to an Interest, a consumer
 SHOULD put an Interest Payload ID (see Section 3.2) as part of the
 name to allow a forwarder to match Interests to Content Objects and
 avoid aggregating Interests with different payloads. Similarly, if a
 consumer uses a MAC or a signature, it SHOULD also include a unique
 segment as part of the name to prevent the Interest from being
 aggregated with other Interests or satisfied by a Content Object that
 has no relation to the validation.

 The consumer SHOULD specify an InterestLifetime, which is the length
 of time the consumer is willing to wait for a response. The
 InterestLifetime is an application-scale time, not a network round-
 trip time (see Section 2.4.2). If not present, the InterestLifetime
 will use a default value (2 seconds).

 The consumer SHOULD set the Interest HopLimit to a reasonable value
 or use the default 255. If the consumer knows the distances to the
 producer via routing, it SHOULD use that value.

 A consumer hands off the Interest to its first forwarder, which will
 then forward the Interest over the network to a publisher (or
 replica) that may satisfy it based on the name (see Section 2.4).

 Interest messages are unreliable. A consumer SHOULD run a transport
 protocol that will retry the Interest if it goes unanswered, up to
 the InterestLifetime. No transport protocol is specified in this
 document.

 The network MAY send to the consumer an Interest Return message that
 indicates the network cannot fulfill the Interest. The ReturnCode
 specifies the reason for the failure, such as no route or congestion.
 Depending on the ReturnCode, the consumer MAY retry the Interest or
 MAY return an error to the requesting application.

Mosko, et al. Experimental [Page 14]

RFC 8569 CCNx Semantics July 2019

 If the content was found and returned by the first forwarder, the
 consumer will receive a Content Object. The consumer uses the
 following set of checks to validate a received Content Object:

 o The consumer MUST ensure the Content Object is properly formatted.

 o The consumer MUST verify that the returned Content Object matches
 one or more pending Interests as per Section 9.

 o If the Content Object is signed, the consumer SHOULD
 cryptographically verify the signature as per Section 8. If it
 does not have the corresponding key, it SHOULD fetch the key, such
 as from a key resolution service or via the KeyLink.

 o If the signature has a SigTime, the consumer MAY use that in
 considering if the signature is valid. For example, if the
 consumer is asking for dynamically generated content, it should
 expect the SigTime not to be before the time the Interest was
 generated.

 o If the Content Object is signed, the consumer SHOULD assert the
 trustworthiness of the signing key to the namespace. Such an
 assertion is beyond the scope of this document, though one may use
 traditional PKI methods, a trusted key resolution service, or
 methods like [trust].

 o The consumer MAY cache the Content Object for future use, up to
 the ExpiryTime if present.

 o The consumer MAY accept a Content Object off the wire that is
 expired. A packet Content Object may expire while in flight;
 there is no requirement that forwarders drop expired packets in
 flight. The only requirement is that Content Stores, caches, or
 producers MUST NOT respond with an expired Content Object.

2.3. Publisher Behavior

 This document does not specify the method by which names populate a
 FIB table at forwarders (see Section 2.4). A publisher is either
 configured with one or more name prefixes under which it may create
 content or it chooses its name prefixes and informs the routing layer
 to advertise those prefixes.

 When a publisher receives an Interest, it SHOULD:

 o Verify that the Interest is part of the publisher’s namespace(s).

Mosko, et al. Experimental [Page 15]

RFC 8569 CCNx Semantics July 2019

 o If the Interest has a Validation section, verify it as per
 Section 8. Usually an Interest will only have a CRC32C, unless
 the publisher application specifically accommodates other
 validations. The publisher MAY choose to drop Interests that
 carry a Validation section if the publisher application does not
 expect those signatures, as this could be a form of computational
 denial of service. If the signature requires a key that the
 publisher does not have, it is NOT RECOMMENDED that the publisher
 fetch the key over the network unless it is part of the
 application’s expected behavior.

 o Retrieve or generate the requested Content Object and return it to
 the Interest’s previous hop. If the requested content cannot be
 returned, the publisher SHOULD reply with an Interest Return or a
 Content Object with application payload that says the content is
 not available; this Content Object should have a short ExpiryTime
 in the future or not be cacheable (i.e., an expiry time of 0).

2.4. Forwarder Behavior

 A forwarder routes Interest messages based on a Forwarding
 Information Base (FIB), returns Content Objects that match Interests
 to the Interest’s previous hop, and processes Interest Return control
 messages. It may also keep a cache of Content Objects in the
 notional Content Store table. This document does not specify the
 internal behavior of a forwarder, only these and other external
 behaviors.

 In this document, we will use two processing pipelines: one for
 Interests and one for Content Objects. Interest processing is made
 up of checking for duplicate Interests in the PIT (see
 Section 2.4.2), checking for a cached Content Object in the Content
 Store (see Section 2.4.3), and forwarding an Interest via the FIB.
 Content Store processing is made up of checking for matching
 Interests in the PIT and forwarding to those previous hops.

2.4.1. Interest HopLimit

 Interest looping is not prevented in CCNx. An Interest traversing
 loops is eventually discarded using the hop-limit field of the
 Interest, which is decremented at each hop traversed by the Interest.

 A loop may also terminate because the Interest is aggregated with its
 previous PIT entry along the loop. In this case, the Content Object
 will be sent back along the loop and eventually return to a node that
 already forwarded the content, so it will likely not have a PIT entry
 anymore. When the content reaches a node without a PIT entry, it

Mosko, et al. Experimental [Page 16]

RFC 8569 CCNx Semantics July 2019

 will be discarded. It may be that a new Interest or another looped
 Interest will return to that same node, in which case the node will
 return a cached response to make a new PIT entry, as below.

 The HopLimit is the last resort method to stop Interest loops where a
 Content Object chases an Interest around a loop and where the
 intermediate nodes, for whatever reason, no longer have a PIT entry
 and do not cache the Content Object.

 Every Interest MUST carry a HopLimit. An Interest received from a
 local application MAY have a 0 HopLimit, which restricts the Interest
 to other local sources.

 When an Interest is received from another forwarder, the HopLimit
 MUST be positive, otherwise the forwarder will discard the Interest.
 A forwarder MUST decrement the HopLimit of an Interest by at least 1
 before it is forwarded.

 If the decremented HopLimit equals 0, the Interest MUST NOT be
 forwarded to another forwarder; it MAY be sent to a local publisher
 application or serviced from a local Content Store.

 A RECOMMENDED HopLimit-processing pipeline is below:

 o If Interest received from a remote system:

 * If received HopLimit is 0, optionally send Interest Return
 (HopLimit Exceeded), and discard Interest.

 * Otherwise, decrement the HopLimit by 1.

 o Process as per Content Store and Aggregation rules.

 o If the Interest will be forwarded:

 * If the (potentially decremented) HopLimit is 0, restrict
 forwarding to the local system.

 * Otherwise, forward as desired to local or remote systems.

2.4.2. Interest Aggregation

 Interest aggregation is when a forwarder receives an Interest message
 that could be satisfied by the response to another Interest message
 already forwarded by the node, so the forwarder suppresses forwarding
 the new Interest; it only records the additional previous hop so a
 Content Object sent in response to the first Interest will satisfy
 both Interests.

Mosko, et al. Experimental [Page 17]

RFC 8569 CCNx Semantics July 2019

 CCNx uses an Interest aggregation rule that assumes the
 InterestLifetime is akin to a subscription time and is not a network
 round-trip time. Some previous aggregation rules assumed the
 lifetime was a round-trip time, but this leads to problems of
 expiring an Interest before a response comes if the RTT is estimated
 too short or interfering with an Automatic Repeat reQuest (ARQ)
 scheme that wants to retransmit an Interest but a prior Interest
 overestimated the RTT.

 A forwarder MAY implement an Interest aggregation scheme. If it does
 not, then it will forward all Interest messages. This does not imply
 that multiple, possibly identical, Content Objects will come back. A
 forwarder MUST still satisfy all pending Interests, so one Content
 Object could satisfy multiple similar Interests, even if the
 forwarder did not suppress duplicate Interest messages.

 A RECOMMENDED Interest aggregation scheme is:

 o Two Interests are considered "similar" if they have the same Name,
 KeyIdRestr, and ContentObjectHashRestr, where a missing optional
 field in one must be missing in the other.

 o Let the notional value InterestExpiry (a local value at the
 forwarder) be equal to the receive time plus the InterestLifetime
 (or a platform-dependent default value if not present).

 o An Interest record (PIT entry) is considered invalid if its
 InterestExpiry time is in the past.

 o The first reception of an Interest MUST be forwarded.

 o A second or later reception of an Interest similar to a valid
 pending Interest from the same previous hop MUST be forwarded. We
 consider these a retransmission request.

 o A second or later reception of an Interest similar to a valid
 pending Interest from a new previous hop MAY be aggregated (not
 forwarded). If this Interest has a larger HopLimit than the
 pending Interest, it MUST be forwarded.

 o Aggregating an Interest MUST extend the InterestExpiry time of the
 Interest record. An implementation MAY keep a single
 InterestExpiry time for all previous hops or MAY keep the
 InterestExpiry time per previous hop. In the first case, the
 forwarder might send a Content Object down a path that is no
 longer waiting for it, in which case the previous hop (next hop of
 the Content Object) would drop it.

Mosko, et al. Experimental [Page 18]

RFC 8569 CCNx Semantics July 2019

2.4.3. Content Store Behavior

 The Content Store is a special cache that is an integral part of a
 CCNx forwarder. It is an optional component. It serves to repair
 lost packets and handle flash requests for popular content. It could
 be prepopulated or use opportunistic caching. Because the Content
 Store could serve to amplify an attack via cache poisoning, there are
 special rules about how a Content Store behaves.

 1. A forwarder MAY implement a Content Store. If it does, the
 Content Store matches a Content Object to an Interest via the
 normal matching rules (see Section 9).

 2. If an Interest has a KeyId restriction, then the Content Store
 MUST NOT reply unless it knows the signature on the matching
 Content Object is correct. It may do this by external knowledge
 (i.e., in a managed network or system with prepopulated caches)
 or by having the public key and cryptographically verifying the
 signature. A Content Store is NOT REQUIRED to verify signatures;
 if it does not, then it treats these cases like a cache miss.

 3. If a Content Store chooses to verify signatures, then it MAY do
 so as follows. If the public key is provided in the Content
 Object itself (i.e., in the PublicKey field) or in the Interest,
 the Content Store MUST verify that the public key’s hash is equal
 to the KeyId and that it verifies the signature (see
 Section 8.4). A Content Store MAY verify the digital signature
 of a Content Object before it is cached, but it is not required
 to do so. A Content Store SHOULD NOT fetch keys over the
 network. If it cannot or has not yet verified the signature, it
 should treat the Interest as a cache miss.

 4. If an Interest has a Content Object Hash restriction, then the
 Content Store MUST NOT reply unless it knows the matching Content
 Object has the correct hash. If it cannot verify the hash, then
 it should treat the Interest as a cache miss.

 5. It must obey the cache control directives (see Section 4).

2.4.4. Interest Pipeline

 1. Perform the HopLimit check (see Section 2.4.1).

 2. If the Interest carries a validation, such as a MIC or a
 signature with an embedded public key or certificate, a forwarder
 MAY validate the Interest as per Section 8. A forwarder SHOULD
 NOT fetch keys via a KeyLink. If the forwarder drops an Interest

Mosko, et al. Experimental [Page 19]

RFC 8569 CCNx Semantics July 2019

 due to failed validation, it MAY send an Interest Return
 (Section 10.3.9).

 3. Determine if the Interest can be aggregated as per Section 2.4.2.
 If it can be, aggregate and do not forward the Interest.

 4. If forwarding the Interest, check for a hit in the Content Store
 as per Section 2.4.3. If a matching Content Object is found,
 return it to the Interest’s previous hop. This injects the
 Content Store as per Section 2.4.5.

 5. Look up the Interest in the FIB. Longest Prefix Match (LPM) is
 performed name segment by name segment (not byte or bit). It
 SHOULD exclude the Interest’s previous hop. If a match is found,
 forward the Interest. If no match is found or the forwarder
 chooses not to forward due to a local condition (e.g.,
 congestion), it SHOULD send an Interest Return message as per
 Section 10.

2.4.5. Content Object Pipeline

 1. It is RECOMMENDED that a forwarder that receives a Content Object
 check that the Content Object came from an expected previous hop.
 An expected previous hop is one pointed to by the FIB or one
 recorded in the PIT as having had a matching Interest sent that
 way.

 2. A Content Object MUST be matched to all pending Interests that
 satisfy the matching rules (see Section 9). Each satisfied
 pending Interest MUST then be removed from the set of pending
 Interests.

 3. A forwarder SHOULD NOT send more than one copy of the received
 Content Object to the same Interest previous hop. It may happen,
 for example, that two Interests ask for the same Content Object
 in different ways (e.g., by name and by name and KeyId), and that
 they both come from the same previous hop. It is normal to send
 the same Content Object multiple times on the same interface,
 such as Ethernet, if it is going to different previous hops.

 4. A Content Object SHOULD only be put in the Content Store if it
 satisfied an Interest (and passed rule #1 above). This is to
 reduce the chances of cache poisoning.

Mosko, et al. Experimental [Page 20]

RFC 8569 CCNx Semantics July 2019

3. Names

 A CCNx name is a composition of name segments. Each name segment
 carries a label identifying the purpose of the name segment, and a
 value. For example, some name segments are general names and some
 serve specific purposes such as carrying version information or the
 sequencing of many chunks of a large object into smaller, signed
 Content Objects.

 There are three different types of names in CCNx: prefix, exact, and
 full names. A prefix name is simply a name that does not uniquely
 identify a single Content Object, but rather a namespace or prefix of
 an existing Content Object name. An exact name is one that uniquely
 identifies the name of a Content Object. A full name is one that is
 exact and is accompanied by an explicit or implicit ConObjHash. The
 ConObjHash is explicit in an Interest and implicit in a Content
 Object.

 Note that a forwarder does not need to know any semantics about a
 name. It only needs to be able to match a prefix to forward
 Interests and match an exact or full name to forward Content Objects.
 It is not sensitive to the name segment types.

 The name segment labels specified in this document are given in
 Table 1. Name Segment is a general name segment, typically occurring
 in the routable prefix and user-specified content name. Interest
 Payload ID is a name segment to identify the Interest’s payload.
 Application Components are a set of name segment types reserved for
 application use.

Mosko, et al. Experimental [Page 21]

RFC 8569 CCNx Semantics July 2019

 +-------------+---+
 | Type | Description |
 +-------------+---+
Name	A generic name segment that includes arbitrary
Segment	octets.
Interest	An octet string that identifies the payload carried
Payload ID	in an Interest. As an example, the Payload ID
	might be a hash of the Interest Payload. This
	provides a way to differentiate between Interests
	based on the payload solely through a name segment
	without having to include all the extra bytes of
	the payload itself.
Application	An application-specific payload in a name segment.
Components	An application may apply its own semantics to these
	components. A good practice is to identify the
	application in a name segment prior to the
	application component segments.
 +-------------+---+

 Table 1: CCNx Name Segment Types

 At the lowest level, a forwarder does not need to understand the
 semantics of name segments; it need only identify name segment
 boundaries and be able to compare two name segments (both label and
 value) for equality. The forwarder matches names segment by segment
 against its forwarding table to determine a next hop.

Mosko, et al. Experimental [Page 22]

RFC 8569 CCNx Semantics July 2019

3.1. Name Examples

 This section uses the CCNx URI [ccnx-uri] representation of CCNx
 names. Note that as per the message grammar, an Interest must have a
 Name with at least one name segment that must have at least 1 octet
 of value. A Content Object must have a similar name or no name at
 all. The FIB, on the other hand, could have 0-length names (a
 default route), or a first name segment with no value, or a regular
 name.

 +--------------------------+--+
 | Name | Description |
 +--------------------------+--+
ccnx:/	A 0-length name, corresponds to a
	default route.
ccnx:/NAME=	A name with 1 segment of 0 length,
	distinct from ccnx:/.
ccnx:/NAME=foo/APP:0=bar	A 2-segment name, where the first
	segment is of type NAME and the second
	segment is of type APP:0.
 +--------------------------+--+

 Table 2: CCNx Name Examples

3.2. Interest Payload ID

 An Interest may also have a Payload field that carries state about
 the Interest but is not used to match a Content Object. If an
 Interest contains a payload, the Interest name should contain an
 Interest Payload ID (IPID). The IPID allows a PIT entry to correctly
 multiplex Content Objects in response to a specific Interest with a
 specific payload ID. The IPID could be derived from a hash of the
 payload or could be a Globally Unique Identifier (GUID) or a nonce.
 An optional Metadata field defines the IPID field so other systems
 can verify the IPID, such as when it is derived from a hash of the
 payload. No system is required to verify the IPID.

4. Cache Control

 CCNx supports two fields that affect cache control. These determine
 how a cache or Content Store handles a Content Object. They are not
 used in the fast path; they are only used to determine if a Content
 Object can be injected onto the fast path in response to an Interest.

 The ExpiryTime is a field that exists within the signature envelope
 of a Validation Algorithm. It is the UTC time in milliseconds after

Mosko, et al. Experimental [Page 23]

RFC 8569 CCNx Semantics July 2019

 which the Content Object is considered expired and MUST no longer be
 used to respond to an Interest from a cache. Stale content MAY be
 flushed from the cache.

 The Recommended Cache Time (RCT) is a field that exists outside the
 signature envelope. It is the UTC time in milliseconds after which
 the publisher considers the Content Object to be of low value to
 cache. A cache SHOULD discard it after the RCT, though it MAY keep
 it and still respond with it. A cache MAY also discard the Content
 Object before the RCT time; there is no contractual obligation to
 remember anything.

 This formulation allows a producer to create a Content Object with a
 long ExpiryTime but short RCT and keep republishing the same signed
 Content Object over and over again by extending the RCT. This allows
 a form of "phone home" where the publisher wants to periodically see
 that the content is being used.

5. Content Object Hash

 CCNx allows an Interest to restrict a response to a specific hash.
 The hash covers the Content Object message body and the validation
 sections, if present. Thus, if a Content Object is signed, its hash
 includes that signature value. The hash does not include the fixed
 or hop-by-hop headers of a Content Object. Because it is part of the
 matching rules (see Section 9), the hash is used at every hop.

 There are two options for matching the Content Object Hash
 restriction in an Interest. First, a forwarder could compute for
 itself the hash value and compare it to the restriction. This is an
 expensive operation. The second option is for a border device to
 compute the hash once and place the value in a header (ConObjHash)
 that is carried through the network. The second option, of course,
 removes any security properties from matching the hash, so it SHOULD
 only be used within a trusted domain. The header SHOULD be removed
 when crossing a trust boundary.

6. Link

 A Link is the tuple {Name, [KeyIdRestr], [ContentObjectHashRestr]}.
 The information in a Link comprises the fields of an Interest that
 would retrieve the Link target. A Content Object with PayloadType of
 "Link" is an object whose payload is one or more Links. This tuple
 may be used as a KeyLink to identify a specific object with the
 certificate-wrapped key. It is RECOMMENDED to include at least one
 of either KeyId restriction or Content Object Hash restriction. If
 neither restriction is present, then any Content Object with a
 matching name from any publisher could be returned.

Mosko, et al. Experimental [Page 24]

RFC 8569 CCNx Semantics July 2019

7. Hashes

 Several protocol fields use cryptographic hash functions, which must
 be secure against attack and collisions. Because these hash
 functions change over time, with better ones appearing and old ones
 falling victim to attacks, it is important that a CCNx protocol
 implementation supports hash agility.

 In this document, we suggest certain hashes (e.g., SHA-256), but a
 specific implementation may use what it deems best. The normative
 CCNx Messages [RFC8609] specification should be taken as the
 definition of acceptable hash functions and uses.

8. Validation

8.1. Validation Algorithm

 The Validator consists of a ValidationAlgorithm that specifies how to
 verify the message and a ValidationPayload containing the validation
 output, e.g., the digital signature or MAC. The ValidationAlgorithm
 section defines the type of algorithm to use and includes any
 necessary additional information. The validation is calculated from
 the beginning of the CCNx Message through the end of the
 ValidationAlgorithm section (i.e., up to but not including the
 validation payload). We refer to this as the validation region. The
 ValidationPayload is the integrity value bytes, such as a MAC or
 signature.

 The CCNx Message Grammar (Section 2.1) shows the allowed validation
 algorithms and their structure. In the case of a Vendor algorithm,
 the vendor may use any desired structure. A Validator can only be
 applied to an Interest or a Content Object, not an Interest Return.
 An Interest inside an Interest Return would still have the original
 validator, if any.

 The grammar allows multiple Vendor extensions to the validation
 algorithm. It is up to the vendor to describe the validation region
 for each extension. A vendor may, for example, use a regular
 signature in the validation algorithm, then append a proprietary MIC
 to allow for in-network error checking without using expensive
 signature verification. As part of this specification, we do not
 allow for multiple Validation Algorithm blocks apart from these
 vendor methods.

Mosko, et al. Experimental [Page 25]

RFC 8569 CCNx Semantics July 2019

8.2. Message Integrity Codes

 If the validation algorithm is CRC32C, then the validation payload is
 the output of the CRC over the validation region. This validation
 algorithm allows for an optional signature time (SigTime) to
 timestamp when the message was validated (calling it a "signature"
 time is a slight misnomer, but we reuse the same field for this
 purpose between MICs, MACs, and signatures).

 MICs are usually used with an Interest to avoid accidental in-network
 corruption. They are usually not used on Content Objects because the
 objects are either signed or linked to by hash chains, so the CRC32C
 is redundant.

8.3. Message Authentication Codes

 If the validation algorithm is HMAC-SHA256, then the validation
 payload is the output of the HMAC over the validation region. The
 validation algorithm requires a KeyId and allows for a signature time
 (SigTime) and KeyLink.

 The KeyId field identifies the shared secret used between two parties
 to authenticate messages. These secrets SHOULD be derived from a key
 exchange protocol such as [ccnx-ke]. The KeyId, for a shared secret,
 SHOULD be an opaque identifier not derived from the actual key; an
 integer counter, for example, is a good choice.

 The signature time is the timestamp when the authentication code was
 computed and added to the messages.

 The KeyLink field in a MAC indicates how to negotiate keys and should
 point towards the key exchange endpoint. The use of a key
 negotiation algorithm is beyond the scope of this specification, and
 a key negotiation algorithm is not required to use this field.

8.4. Signature

 Signature-validation algorithms use public key cryptographic
 algorithms such as RSA and the Elliptic Curve Digital Signature
 Algorithm (ECDSA). This specification and the corresponding wire
 encoding [RFC8609] only support three specific signature algorithms:
 RSA-SHA256, EC-SECP-256K1, and EC-SECP-384R1. Other algorithms may
 be added in through other documents or by using experimental or
 vendor-validation algorithm types.

Mosko, et al. Experimental [Page 26]

RFC 8569 CCNx Semantics July 2019

 A signature that is public key based requires a KeyId field and may
 optionally carry a signature time, an embedded public key, an
 embedded certificate, and a KeyLink. The signature time behaves as
 normal to timestamp when the signature was created. We describe the
 use and relationship of the other fields here.

 It is not common to use embedded certificates, as they can be very
 large and may have validity periods different than the validated
 data. The preferred method is to use a KeyLink to the validating
 certificate.

 The KeyId field in the ValidationAlgorithm identifies the public key
 used to verify the signature. It is similar to a Subject Key
 Identifier from X.509 (Section 4.2.1.2 of [RFC5280]). We define the
 KeyId to be a cryptographic hash of the public key in DER form. All
 implementations MUST support the SHA-256 digest as the KeyId hash.

 The use of other algorithms for the KeyId is allowed, and it will not
 cause problems at a forwarder because the forwarder only matches the
 digest algorithm and digest output and does not compute the digest
 (see Section 9). It may cause issues with a Content Store, which
 needs to verify the KeyId and PublicKey match (see Section 2.4.3);
 though in this case, it only causes a cache miss and the Interest
 would still be forwarded to the publisher. As long as the publisher
 and consumers support the hash, data will validate.

 As per Section 9, a forwarder only matches the KeyId to a KeyId
 restriction. It does not need to look at the other fields such as
 the public key, certificate, or KeyLink.

 If a message carries multiples of the KeyId, public key, certificate,
 or KeyLink, an endpoint (consumer, cache, or Content Store) MUST
 ensure that any fields it uses are consistent. The KeyId MUST be the
 corresponding hash of the embedded public key or certificate public
 key. The hash function to use is the KeyId’s HashType. If there is
 both an embedded public key and a certificate, the public keys MUST
 be the same.

 A message SHOULD NOT have both a PublicKey and a KeyLink to a public
 key, as that is redundant. It MAY have a PublicKey and a KeyLink to
 a certificate.

 A KeyLink in a first Content Object may point to a second Content
 Object with a DER-encoded public key in the PublicKey field and an
 optional DER-encoded X.509 certificate in the payload. The second
 Content Object’s KeyId MUST equal the first object’s KeyId. The
 second object’s PublicKey field MUST be the public key corresponding
 to the KeyId. That key must validate both the first and second

Mosko, et al. Experimental [Page 27]

RFC 8569 CCNx Semantics July 2019

 object’s signature. A DER-encoded X.509 certificate may be included
 in the second object’s payload and its embedded public key MUST match
 the PublicKey. It must be issued by a trusted authority, preferably
 specifying the valid namespace of the key in the distinguished name.
 The second object MUST NOT have a KeyLink; we do not allow for
 recursive key lookup.

9. Interest to Content Object Matching

 A Content Object satisfies an Interest if and only if (a) the Content
 Object name, if present, exactly matches the Interest name, (b) the
 ValidationAlgorithm KeyId of the Content Object exactly equals the
 Interest KeyId restriction, if present, and (c) the computed Content
 Object Hash exactly equals the Interest Content Object Hash
 restriction, if present.

 The KeyId and KeyIdRestr use the Hash format (see Section 2.1). The
 Hash format has an embedded HashType followed by the hash value.
 When comparing a KeyId and KeyIdRestr, one compares both the HashType
 and the value.

 The matching rules are given by this predicate, which, if it
 evaluates true, means the Content Object matches the Interest. Ni =
 Name in the Interest (may not be empty), Ki = KeyIdRestr in the
 Interest (may be empty), and Hi = ContentObjectHashRestr in the
 Interest (may be empty). Likewise, No, Ko, and Ho are those
 properties in the Content Object, where No and Ko may be empty; Ho
 always exists (it is an intrinsic property of the Content Object).
 For binary relations, we use "&" for AND and "|" for OR. We use "E"
 for the EXISTS (not empty) operator and "!" for the NOT EXISTS
 operator.

 As a special case, if the Content Object Hash restriction in the
 Interest specifies an unsupported hash algorithm, then no Content
 Object can match the Interest, so the system should drop the Interest
 and MAY send an Interest Return to the previous hop. In this case,
 the predicate below will never get executed because the Interest is
 never forwarded. If the system is using the optional behavior of
 having a different system calculate the hash for it, then the system
 may assume all hash functions are supported and leave it to the other
 system to accept or reject the Interest.

 (!No | (Ni=No)) & (!Ki | (Ki=Ko)) & (!Hi | (Hi=Ho)) & (E No | E Hi)

 As one can see, there are two types of attributes one can match. The
 first term depends on the existence of the attribute in the Content
 Object while the next two terms depend on the existence of the
 attribute in the Interest. The last term is the "Nameless Object"

Mosko, et al. Experimental [Page 28]

RFC 8569 CCNx Semantics July 2019

 restriction that states that if a Content Object does not have a
 Name, then it must match the Interest on at least the Hash
 restriction.

 If a Content Object does not carry the Content Object Hash as an
 expressed field, it must be calculated in network to match against.
 It is sufficient within an autonomous system to calculate a Content
 Object Hash at a border router and carry it via trusted means within
 the autonomous system. If a Content Object ValidationAlgorithm does
 not have a KeyId, then the Content Object cannot match an Interest
 with a KeyId restriction.

10. Interest Return

 This section describes the process whereby a network element may
 return an Interest message to a previous hop if there is an error
 processing the Interest. The returned Interest may be further
 processed at the previous hop or returned towards the Interest
 origin. When a node returns an Interest, it indicates that the
 previous hop should not expect a response from that node for the
 Interest, i.e., there is no PIT entry left at the returning node.

 The returned message maintains compatibility with the existing TLV
 packet format (a fixed header, optional hop-by-hop headers, and the
 CCNx Message body). The returned Interest packet is modified in only
 two ways:

 o The PacketType is set to Interest Return to indicate a Feedback
 message.

 o The ReturnCode is set to the appropriate value to signal the
 reason for the return.

 The specific encodings of the Interest Return are specified in
 [RFC8609].

 A forwarder is not required to send any Interest Return messages.

 A forwarder is not required to process any received Interest Return
 message. If a forwarder does not process Interest Return messages,
 it SHOULD silently drop them.

 The Interest Return message does not apply to a Content Object or any
 other message type.

Mosko, et al. Experimental [Page 29]

RFC 8569 CCNx Semantics July 2019

 An Interest Return message is a 1-hop message between peers. It is
 not propagated multiple hops via the FIB. An intermediate node that
 receives an Interest Return may take corrective actions or may
 propagate its own Interest Return to previous hops as indicated in
 the reverse path of a PIT entry.

10.1. Message Format

 The Interest Return message looks exactly like the original Interest
 message with the exception of the two modifications mentioned above.
 The PacketType is set to indicate the message is an Interest Return,
 and the reserved byte in the Interest header is used as a Return
 Code. The numeric values for the PacketType and ReturnCodes are in
 [RFC8609].

Mosko, et al. Experimental [Page 30]

RFC 8569 CCNx Semantics July 2019

10.2. ReturnCode Types

 This section defines the Interest Return ReturnCode introduced in
 this RFC. The numeric values used in the packet are defined in
 [RFC8609].

 +----------------------+--+
 | Name | Description |
 +----------------------+--+
No Route (Section	The returning forwarder has no route to
10.3.1)	the Interest name.
HopLimit Exceeded	The HopLimit has decremented to 0 and
(Section 10.3.2)	needs to forward the packet.
Interest MTU too	The Interest’s MTU does not conform to the
large (Section	required minimum and would require
10.3.3)	fragmentation.
No Resources	The node does not have the resources to
(Section 10.3.4)	process the Interest.
Path error (Section	There was a transmission error when
10.3.5)	forwarding the Interest along a route (a
	transient error).
Prohibited (Section	An administrative setting prohibits
10.3.6)	processing this Interest.
Congestion (Section	The Interest was dropped due to congestion
10.3.7)	(a transient error).
Unsupported Content	The Interest was dropped because it
Object Hash	requested a Content Object Hash
Algorithm (Section	restriction using a hash algorithm that
10.3.8)	cannot be computed.
Malformed Interest	The Interest was dropped because it did
(Section 10.3.9)	not correctly parse.
 +----------------------+--+

 Table 3: Interest Return Reason Codes

Mosko, et al. Experimental [Page 31]

RFC 8569 CCNx Semantics July 2019

10.3. Interest Return Protocol

 This section describes the forwarder behavior for the various Reason
 codes for Interest Return. A forwarder is not required to generate
 any of the codes, but if it does, it MUST conform to this
 specification.

 If a forwarder receives an Interest Return, it SHOULD take these
 standard corrective actions. A forwarder is allowed to ignore
 Interest Return messages, in which case its PIT entry would go
 through normal timeout processes.

 o Verify that the Interest Return came from a next hop to which it
 actually sent the Interest.

 o If a PIT entry for the corresponding Interest does not exist, the
 forwarder should ignore the Interest Return.

 o If a PIT entry for the corresponding Interest does exist, the
 forwarder MAY do one of the following:

 * Try a different forwarding path, if one exists, and discard the
 Interest Return, or

 * Clear the PIT state and send an Interest Return along the
 reverse path.

 If a forwarder tries alternate routes, it MUST ensure that it does
 not use the same path multiple times. For example, it could keep
 track of which next hops it has tried and not reuse them.

 If a forwarder tries an alternate route, it may receive a second
 Interest Return, possibly of a different type than the first Interest
 Return. For example, node A sends an Interest to node B, which sends
 a No Route return. Node A then tries node C, which sends a
 Prohibited Interest Return. Node A should choose what it thinks is
 the appropriate code to send back to its previous hop.

 If a forwarder tries an alternate route, it should decrement the
 Interest Lifetime to account for the time spent thus far processing
 the Interest.

10.3.1. No Route

 If a forwarder receives an Interest for which it has no route, or for
 which the only route is back towards the system that sent the
 Interest, the forwarder SHOULD generate a "No Route" Interest Return
 message.

Mosko, et al. Experimental [Page 32]

RFC 8569 CCNx Semantics July 2019

 How a forwarder manages the FIB table when it receives a No Route
 message is implementation dependent. In general, receiving a No
 Route Interest Return should not cause a forwarder to remove a route.
 The dynamic routing protocol that installed the route should correct
 the route, or the administrator who created a static route should
 correct the configuration. A forwarder could suppress using that
 next hop for some period of time.

10.3.2. HopLimit Exceeded

 A forwarder MAY choose to send HopLimit Exceeded messages when it
 receives an Interest that must be forwarded off system and the
 HopLimit is 0.

10.3.3. Interest MTU Too Large

 If a forwarder receives an Interest whose MTU exceeds the prescribed
 minimum, it MAY send an "Interest MTU Too Large" message, or it may
 silently discard the Interest.

 If a forwarder receives an "Interest MTU Too Large" response, it
 SHOULD NOT try alternate paths. It SHOULD propagate the Interest
 Return to its previous hops.

10.3.4. No Resources

 If a forwarder receives an Interest and it cannot process the
 Interest due to lack of resources, it MAY send an Interest Return. A
 lack of resources could mean the PIT is too large or that there is
 some other capacity limit.

10.3.5. Path Error

 If a forwarder detects an error forwarding an Interest, such as over
 a reliable link, it MAY send a Path-Error Interest Return indicating
 that it was not able to send or repair a forwarding error.

10.3.6. Prohibited

 A forwarder may have administrative policies, such as access control
 lists (ACLs), that prohibit receiving or forwarding an Interest. If
 a forwarder discards an Interest due to a policy, it MAY send a
 Prohibited Interest Return to the previous hop. For example, if
 there is an ACL that says "/example/private" can only come from
 interface e0, but the forwarder receives one from e1, the forwarder
 must have a way to return the Interest with an explanation.

Mosko, et al. Experimental [Page 33]

RFC 8569 CCNx Semantics July 2019

10.3.7. Congestion

 If a forwarder discards an Interest due to congestion, it MAY send a
 Congestion Interest Return to the previous hop.

10.3.8. Unsupported Content Object Hash Algorithm

 If a Content Object Hash restriction specifies a hash algorithm the
 forwarder cannot verify, the Interest should not be accepted and the
 forwarder MAY send an Interest Return to the previous hop.

10.3.9. Malformed Interest

 If a forwarder detects a structural or syntactical error in an
 Interest, it SHOULD drop the Interest and MAY send an Interest Return
 to the previous hop. This does not imply that any router must
 validate the entire structure of an Interest.

11. IANA Considerations

 This document has no IANA actions.

12. Security Considerations

 The CCNx protocol is an L3 network protocol, which may also operate
 as an overlay using other transports such as UDP or other tunnels.
 It includes intrinsic support for message authentication via a
 signature (e.g., RSA or elliptic curve) or message authentication
 code (e.g., HMAC). In lieu of an authenticator, it may instead use a
 message integrity check (e.g., SHA or CRC). CCNx does not specify an
 encryption envelope; that function is left to a high-layer protocol
 (e.g., [esic]).

 The CCNx message format includes the ability to attach MICs (e.g.,
 CRC32C), MACs (e.g., HMAC), and signatures (e.g., RSA or ECDSA) to
 all packet types. This does not mean that it is a good idea to use
 an arbitrary ValidationAlgorithm, nor to include computationally
 expensive algorithms in Interest packets, as that could lead to
 computational DoS attacks. Applications should use an explicit
 protocol to guide their use of packet signatures. As a general
 guideline, an application might use a MIC on an Interest to detect
 unintentionally corrupted packets. If one wishes to secure an
 Interest, one should consider using an encrypted wrapper and a
 protocol that prevents replay attacks, especially if the Interest is
 being used as an actuator. Simply using an authentication code or
 signature does not make an Interest secure. There are several
 examples in the literature on how to secure ICN-style messaging
 [mobile] [ace].

Mosko, et al. Experimental [Page 34]

RFC 8569 CCNx Semantics July 2019

 As an L3 protocol, this document does not describe how one arrives at
 keys or how one trusts keys. The CCNx Content Object may include a
 public key or certificate embedded in the object or may use the
 KeyLink field to point to a public key or certificate that
 authenticates the message. One key-exchange specification is CCNxKE
 [ccnx-ke] [mobile], which is similar to the TLS 1.3 key exchange
 except it is over the CCNx L3 messages. Trust is beyond the scope of
 an L3 protocol and left to applications or application frameworks.

 The combination of an ephemeral key exchange (e.g., CCNxKE [ccnx-ke])
 and an encapsulating encryption (e.g., [esic]) provides the
 equivalent of a TLS tunnel. Intermediate nodes may forward the
 Interests and Content Objects but have no visibility inside. It also
 completely hides the internal names in those used by the encryption
 layer. This type of tunneling encryption is useful for content that
 has little or no cacheability, as it can only be used by someone with
 the ephemeral key. Short-term caching may help with lossy links or
 mobility, but long-term caching is usually not of interest.

 Broadcast encryption or proxy re-encryption may be useful for content
 with multiple uses over time or many consumers. There is currently
 no recommendation for this form of encryption.

 The specific encoding of messages will have security implications.
 [RFC8609] uses a type-length-value (TLV) encoding. We chose to
 compromise between extensibility and unambiguous encodings of types
 and lengths. Some TLV encodings use variable-length "T" and
 variable-length "L" fields to accommodate a wide gamut of values
 while trying to be byte efficient. Our TLV encoding uses a fixed-
 length 2-byte "T" and 2-byte "L". Using a fixed-length "T" and "L"
 field solves two problems. The first is aliases. If one is able to
 encode the same value, such as %x02 and %x0002, in different byte
 lengths, then one must decide if they mean the same thing, if they
 are different, or if one is illegal. If they are different, then one
 must always compare on the buffers, not the integer equivalents. If
 one is illegal, then one must validate the TLV encoding, every field
 of every packet at every hop. If they are the same, then one has the
 second problem: how to specify packet filters. For example, if a
 name has 6 name components, then there are 7 T’s and 7 L’s, each of
 which might have up to 4 representations of the same value. That
 would be 14 fields with 4 encodings each, or 1001 combinations. It
 also means that one cannot compare, for example, a name via a memory
 function as one needs to consider that any embedded "T" or "L" might
 have a different format.

 The Interest Return message has no authenticator from the previous
 hop. Therefore, the payload of the Interest Return should only be
 used locally to match an Interest. A node should never forward that

Mosko, et al. Experimental [Page 35]

RFC 8569 CCNx Semantics July 2019

 Interest Payload as an Interest. It should also verify that it sent
 the Interest in the Interest Return to that node and not allow anyone
 to negate Interest messages.

 Caching nodes must take caution when processing Content Objects. It
 is essential that the Content Store obey the rules outlined in
 Section 2.4.3 to avoid certain types of attacks. CCNx 1.0 has no
 mechanism to work around an undesired result from the network (there
 are no "excludes"), so if a cache becomes poisoned with bad content,
 it might cause problems retrieving content. There are three types of
 access to content from a Content Store: unrestricted, signature
 restricted, and hash restricted. If an Interest has no restrictions,
 then the requester is not particular about what they get back, so any
 matching cached object is OK. In the hash-restricted case, the
 requester is very specific about what they want and the Content Store
 (and every forward hop) can easily verify that the content matches
 the request. In the signature-restricted case (often used for
 initial manifest discovery), the requester only knows the KeyId that
 signed the content. It is this case that requires the closest
 attention in the Content Store to avoid amplifying bad data. The
 Content Store must only respond with a Content Object if it can
 verify the signature; this means either the Content Object carries
 the public key inside it or the Interest carries the public key in
 addition to the KeyId. If that is not the case, then the Content
 Store should treat the Interest as a cache miss and let an endpoint
 respond.

 A user-level cache could perform full signature verification by
 fetching a public key or certificate according to the KeyLink. That
 is not, however, a burden we wish to impose on the forwarder. A
 user-level cache could also rely on out-of-band attestation, such as
 the cache operator only inserting content that it knows has the
 correct signature.

 The CCNx grammar allows for hash-algorithm agility via the HashType.
 It specifies a short list of acceptable hash algorithms that should
 be implemented at each forwarder. Some hash values only apply to end
 systems, so updating the hash algorithm does not affect forwarders;
 they would simply match the buffer that includes the type-length-hash
 buffer. Some fields, such as the ConObjHash, must be verified at
 each hop, so a forwarder (or related system) must know the hash
 algorithm; it could cause backward compatibility problems if the hash
 type is updated. [RFC8609] is the authoritative source for per-
 field-allowed hash types in that encoding.

 A CCNx name uses binary matching whereas a URI uses a case-
 insensitive hostname. Some systems may also use case-insensitive
 matching of the URI path to a resource. An implication of this is

Mosko, et al. Experimental [Page 36]

RFC 8569 CCNx Semantics July 2019

 that human-entered CCNx names will likely have case or non-ASCII
 symbol mismatches unless one uses a consistent URI normalization to
 the CCNx name. It also means that an entity that registers a CCNx
 routable prefix, say "ccnx:/example.com", would need separate
 registrations for simple variations like "ccnx:/Example.com". Unless
 this is addressed in URI normalization and routing protocol
 conventions, there could be phishing attacks.

 For a more general introduction to ICN-related security concerns and
 approaches, see [RFC7927] and [RFC7945].

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [ace] Shang, W., Yu, Y., Liang, T., Zhang, B., and L. Zhang,
 "NDN-ACE: Access Control for Constrained Environments over
 Named Data Networking", NDN Technical Report NDN-0036,
 December 2015, <http://new.named-data.net/
 wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdf>.

 [befrags] Mosko, M. and C. Tschudin, "ICN "Begin-End" Hop by Hop
 Fragmentation", Work in Progress, draft-mosko-icnrg-
 beginendfragment-02, December 2016.

 [ccn-lite] Tschudin, C., et al., "CCN-lite", University of Basel,
 2011-2019, <http://ccn-lite.net>.

 [ccnx-ke] Mosko, M., Uzun, E., and C. Wood, "CCNx Key Exchange
 Protocol Version 1.0", Work in Progress, draft-wood-icnrg-
 ccnxkeyexchange-02, March 2017.

 [ccnx-registry]
 IANA, "Content-Centric Networking (CCNx)",
 <https://www.iana.org/assignments/ccnx>.

Mosko, et al. Experimental [Page 37]

RFC 8569 CCNx Semantics July 2019

 [ccnx-uri] Mosko, M. and C. Wood, "The CCNx URI Scheme", Work in
 Progress, draft-mosko-icnrg-ccnxurischeme-01, April 2016.

 [chunking] Mosko, M., "CCNx Content Object Chunking", Work in
 Progress, draft-mosko-icnrg-ccnxchunking-02, June 2016.

 [cicn] FD.io, "Community ICN (CICN)", February 2017,
 <https://wiki.fd.io/index.php?title=Cicn&oldid=7191>.

 [dart] Garcia-Luna-Aceves, J. and M. Mirzazad-Barijough, "A
 Light-Weight Forwarding Plane for Content-Centric
 Networks", International Conference on Computing,
 Networking, and Communications (ICNC),
 DOI 10.1109/ICCNC.2016.7440637, February 2016,
 <https://arxiv.org/pdf/1603.06044.pdf>.

 [eprise-numbers]
 IANA, "IANA Private Enterprise Numbers",
 <https://www.iana.org/assignments/enterprise-numbers>.

 [esic] Mosko, M. and C. Wood, "Encrypted Sessions In CCNx
 (ESIC)", Work in Progress, draft-wood-icnrg-esic-01,
 September 2017.

 [flic] Tschudin, C. and C. Wood, "File-Like ICN Collection
 (FLIC)", Work in Progress, draft-tschudin-icnrg-flic-03,
 March 2017.

 [mobile] Mosko, M., Uzun, E., and C. Wood, "Mobile Sessions in
 Content-Centric Networks", IFIP Networking Conference
 (IFIP Networking) and Workshops,
 DOI 10.23919/IFIPNetworking.2017.8264861, June 2017,
 <https://dl.ifip.org/db/conf/networking/
 networking2017/1570334964.pdf>.

 [ndn] UCLA, "Named Data Networking", 2019,
 <https://www.named-data.net>.

 [nnc] Jacobson, V., Smetters, D., Thornton, J., Plass, M.,
 Briggs, N., and R. Braynard, "Networking Named Content",
 Proceedings of the 5th International Conference on
 Emerging Networking Experiments and Technologies,
 DOI 10.1145/1658939.1658941, December 2009,
 <https://dx.doi.org/10.1145/1658939.1658941>.

Mosko, et al. Experimental [Page 38]

RFC 8569 CCNx Semantics July 2019

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC7927] Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,
 Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
 "Information-Centric Networking (ICN) Research
 Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,
 <https://www.rfc-editor.org/info/rfc7927>.

 [RFC7945] Pentikousis, K., Ed., Ohlman, B., Davies, E., Spirou, S.,
 and G. Boggia, "Information-Centric Networking: Evaluation
 and Security Considerations", RFC 7945,
 DOI 10.17487/RFC7945, September 2016,
 <https://www.rfc-editor.org/info/rfc7945>.

 [RFC8609] Mosko, M., Solis, I., and C. Wood, "Content-Centric
 Networking (CCNx) Messages in TLV Format", RFC 8609,
 DOI 10.17487/RFC8609, July 2019,
 <https://www.rfc-editor.org/info/rfc8609>.

 [selectors]
 Mosko, M., "CCNx Selector Based Discovery", Work in
 Progress, draft-mosko-icnrg-selectors-01, May 2019.

 [terminology]
 Wissingh, B., Wood, C., Afanasyev, A., Zhang, L., Oran,
 D., and C. Tschudin, "Information-Centric Networking
 (ICN): CCN and NDN Terminology", Work in Progress,
 draft-irtf-icnrg-terminology-04, June 2019.

 [trust] Tschudin, C., Uzun, E., and C. Wood, "Trust in
 Information-Centric Networking: From Theory to Practice",
 25th International Conference on Computer Communication
 and Networks (ICCCN), DOI 10.1109/ICCCN.2016.7568589,
 August 2016, <https://doi.org/10.1109/ICCCN.2016.7568589>.

Mosko, et al. Experimental [Page 39]

RFC 8569 CCNx Semantics July 2019

Authors’ Addresses

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 United States of America

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

 Ignacio Solis
 LinkedIn
 Mountain View, California 94043
 United States of America

 Email: nsolis@linkedin.com

 Christopher A. Wood
 University of California Irvine
 Irvine, California 92697
 United States of America

 Phone: +01 315-806-5939
 Email: woodc1@uci.edu

Mosko, et al. Experimental [Page 40]

