Internet Engineering Task Force (IETF) S. McGlashan

Request for Comments: 6231 Hewlett-Packard
Category: Standards Track T. Melanchuk
ISSN: 2070-1721 Rainwillow
C. Boulton
NS-Technologies
May 2011

An Interactive Voice Response (IVR) Control Package
for the Media Control Channel Framework

Abstract

This document defines a Media Control Channel Framework Package for
Interactive Voice Response (IVR) dialog interaction on media
connections and conferences. The package defines dialog management
request elements for preparing, starting, and terminating dialog
interactions, as well as associated responses and notifications.

Dialog interactions are specified in a dialog language. This package
defines a lightweight IVR dialog language (supporting prompt

playback, runtime controls, Dual-Tone Multi-Frequency (DTMF)
collection, and media recording) and allows other dialog languages to

be used. The package also defines elements for auditing package
capabilities and IVR dialogs.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6231.

Copyright Notice

Copyright (¢) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

McGlashan, et al. Standards Track [Page 1]

RFC 6231 IVR Control Package May 2011

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction 5
2. Conventions and Terminology 8
3. Control Package Definition 9
3.1. Control Package Name 9
3.2. Framework Message Usage 9
3.3. Common XML Support 10
3.4. CONTROL MessageBody 10
3.5. REPORT MessageBody 10
36. Audit. 11
3.7. Examples 11
4. Element Definitions 11
41, <MSCIVI> 12
4.2. Dialog Management Elements 14
4.2.1. <dialogprepare>................... 18
4.2.2. <dialogstart>.................... 20
4.2.2.1. <subscribe>................... 24
4.22.1.1. <dtmfsub>.................. 25
4.22.2. <stream> 26
4.2.2.2.1. <region> 27
4.2.2.2.2. <priority> 27
4.2.3. <dialogterminate>.................. 28
424, <response>, 28
425 . <event>......... 30
4.25.1. <dialogexit> 30
4.2.5.2. <dtmfnotify> 32
4.2.6. <params> 33
4261 <param>............c.i. 33

McGlashan, et al. Standards Track [Page 2]

RFC 6231 IVR Control Package May 2011
4.3. IVR Dialog Elements 34
431. <dialog>, 35
4.3.1.1. <prompt> 38
4.3.1.1.1. <variable> 39
431111 DateType 40
43.1.1.12. TimeType................ 41
4.3.1.1.1.3. DigitsType 42
43112, <dtmf> 42
43.1.1.3. <par>..........c.c.iiian. 43
431131 <S€OU>......ctiiiiin. 45
4312 <control>............., 46
43.13. <collect>.................... 49
43131 <grammar>.................. 52
4314, <record> 53
4315 <media>..................... 57
4.3.2. Exit Information 59
4.3.2.1. <promptinfo> 59
4.3.2.2. <controlinfo>.................. 59
4.3.2.2.1. <controlmatch> 59
4.3.2.3. <collectinfo>.................. 60
4.3.2.4. <recordinfo> 60
4.3.2.4.1. <mediainfo>................. 61
4.4. AuditElements 61
441 <audit>........... 61
4.4.2. <auditresponse>................... 63
4421 <codecs>uii.. 65
44211 <codec>.............c..... 65
4.4.2.2. <capabilities> 66
4.4.2.2.1. <dialoglanguages>.............. 68
4,4.2.2.2. <grammartypes> 68
4.4.2.2.3. <recordtypes>................ 68
4.4.2.2.4. <prompttypes>................ 68
4.4.2.25. <variables>................. 69
4.4.2.2.5.1. <variabletype> 69
4.4.2.2.6. <maxpreparedduration>............ 70
4.4.2.2.7. <maxrecordduration>............. 70
4423, <dialogs>.................... 70
4.4.2.3.1. <dialogaudit>................ 71
4.5. Response StatusCodes 71
4.6. Type Definitions 77
46.1. Boolean....................... 77
46.2. DTMFChar 77
4.6.3. DTMFString 77
4.6.4. Non-Negative Integer 77
4.6.5. Positive Integer 77
46.6. String 78
4.6.7. Time Designation 78
46.8. Percentage 78
McGlashan, et al. Standards Track [Page 3]

RFC 6231 IVR Control Package May 2011

469. URI......., 78
4.6.10. MIME Media Typet 78
4.6.11. Language ldentifier 78
4.6.12. DateTime 79
5. FormalSyntax 79
6. Examples 105
6.1. AS-MS Dialog Interaction Examples 105
6.1.1. StartinganIVRDialog 105
6.1.2. IVR Dialog Failsto Start.............. 106
6.1.3. Preparing and Starting an IVR Dialog 107
6.1.4. TerminatingaDialog 108
6.2. IVR Dialog Examples 108
6.2.1. Playing Announcements................ 109
6.2.2. PromptandCollect 109
6.2.3. PromptandRecord 111
6.2.4. Runtime Controls 112
6.2.5. Subscriptions and Notifications 113
6.2.6. Dialog Repetition until DTMF Collection Complete .. 113
6.3. Other Dialog Languages 114
6.4. Foreign Namespace Attributes and Elements 115
7. Security Considerations 116
8. IANA Considerations 119
8.1. Control Package Registration 119
8.2. URN Sub-Namespace Registration 120
8.3. XML Schema Registration................. 120
8.4. MIME Media Type Registration for
application/msc-ivr+xml 120
8.5. IVR Prompt Variable Type Registration Information 121
9. Using VoiceXML as a Dialog Language 122
9.1. Preparing a VoiceXML Dialog 122
9.2. Starting a VoiceXML Dialog 123
9.2.1. Session Protocol Information 124
9.2.2. Session Media Stream Information 125
9.2.3. Session Parameter Information. 127
9.3. Terminating a VoiceXML Dialog 128
9.4. Exiting a VoiceXML Dialog................ 128
95. Call Transfer 129
10. Contributors, 130
11. Acknowledgments 130
12. References 130
12.1. Normative References 130
12.2. Informative References 132

McGlashan, et al. Standards Track [Page 4]

RFC 6231 IVR Control Package May 2011

1. Introduction

The Media Control Channel Framework [RFC6230] provides a generic
approach for establishment and reporting capabilities of remotely
initiated commands. The Channel Framework -- an equivalent term for
the Media Control Channel Framework -- utilizes many functions
provided by the Session Initiation Protocol (SIP) [RFC3261] for the
rendezvous and establishment of a reliable channel for control
interactions. The Control Framework also introduces the concept of a
Control Package. A Control Package is an explicit usage of the
Control Framework for a particular interaction set. This document
defines a Control Package for Interactive Voice Response (IVR)
dialogs on media connections and conferences. The term 'dialog’ in
this document refers to an IVR dialog and is completely unrelated to
the notion of a SIP dialog. The term 'IVR’ is used in its inclusive
sense, allowing media other than voice for dialog interaction.

The package defines dialog management request elements for preparing,
starting, and terminating dialog interactions, as well as associated
responses and notifications. Dialog interactions are specified using

a dialog language where the language specifies a well-defined syntax
and semantics for permitted operations (play a prompt, record input
from the user, etc.). This package defines a lightweight IVR dialog
language (supporting prompt playback, runtime controls, DTMF
collection, and media recording) and allows other dialog languages to
be used. These dialog languages are specified inside dialog
management elements for preparing and starting dialog interactions.
The package also defines elements for auditing package capabilities
and IVR dialogs.

This package has been designed to satisfy IVR requirements documented
in "Media Server Control Protocol Requirements" [RFC5167] -- more
specifically, REQ-MCP-28, REQ-MCP-29, and REQ-MCP-30. It achieves
this by building upon two major approaches to IVR dialog design.

These approaches address a wide range of IVR use cases and are used
in many applications that are extensively deployed today.

First, the package is designed to provide the major IVR functionality

of SIP media server languages such as netann [RFC4240], Media Server
Control Markup Language (MSCML) [RFC5022], and Media Server Markup
Language (MSML) [RFC5707], which themselves build upon more
traditional non-SIP languages ([H.248.9], [RFC2897]). A key

differentiator is that this package provides IVR functionality using

the Channel Framework.

Second, its design is aligned with key concepts of the web model as

defined in W3C Voice Browser languages. The key dialog management
mechanism is closely aligned with Call Control XML (CCXML) [CCXML10].

McGlashan, et al. Standards Track [Page 5]

RFC 6231 IVR Control Package May 2011

The dialog functionality defined in this package can be largely seen

as a subset of VoiceXML ([VXML20], [VXML21]): where possible, basic
prompting, DTMF collection, and media recording features are
incorporated, but not any advanced VoiceXML constructs (such as
<form>, its interpretation algorithm, or a dynamic data model). As
W3C develops VoiceXML 3.0 [VXML30], we expect to see further
alignment, especially in providing a set of basic independent

primitive elements (such as prompt, collect, record, and runtime
controls) that can be reused in different dialog languages.

By reusing and building upon design patterns from these approaches to
IVR languages, this package is intended to provide a foundation that

is familiar to current IVR developers and sufficient for most IVR
applications, as well as a path to other languages that address more
advanced applications.

This Control Package defines a lightweight IVR dialog language. The
scope of this dialog language is the following IVR functionality:

o playing one or more media resources as a prompt to the user

o runtime controls (including VCR controls like speed and volume)
o collecting DTMF input from the user according to a grammar

o recording user media input

Out of scope for this dialog language are more advanced functions
including ASR (Automatic Speech Recognition), TTS (Text-to-Speech),
fax, automatic prompt recovery ('media fallback’), and media
transformation. Such functionality can be addressed by other dialog
languages (such as VoiceXML) used with this package, extensions to
this package (addition of foreign elements or attributes from another
namespace), or other Control Packages.

The functionality of this package is defined by messages, containing
XML [XML] elements, transported using the Media Control Channel
Framework. The XML elements can be divided into three types: dialog
management elements; a dialog element that defines a lightweight IVR
dialog language used with dialog management elements; and finally,
elements for auditing package capabilities as well as dialogs managed
by the package.

Dialog management elements are designed to manage the general
lifecycle of a dialog. Elements are provided for preparing a dialog,

starting the dialog on a conference or connection, and terminating
execution of a dialog. Each of these elements is contained in a

Media Control Channel Framework CONTROL message sent to the media

McGlashan, et al. Standards Track [Page 6]

RFC 6231 IVR Control Package May 2011

server. When the appropriate action has been executed, the media
server sends a REPORT message (or a 200 response to the CONTROL
message if it can execute in time) with a response element indicating
whether or not the operation was successful (e.g., if the dialog

cannot be started, then the error is reported in this response).

Once a dialog has been successfully started, the media server can
send further event notifications in a framework CONTROL message.
This package defines two event notifications: a DTMF event indicating
the DTMF activity, and a dialogexit event indicating that the dialog
has exited. If the dialog has executed successfully, the dialogexit
event includes information collected during the dialog. If an error
occurs during execution (e.g., a media resource failed to play, no
recording resource available, etc.), then error information is

reported in the dialogexit event. Once a dialogexit event is sent,

the dialog lifecycle is terminated.

The dialog management elements for preparing and starting a dialog
specify the dialog using a dialog language. A dialog language has
well-defined syntax and semantics for defined dialog operations.

Typically, dialog languages are written in XML where the root element

has a designated XML namespace and, when used as standalone
documents, have an associated MIME media type. For example, VoiceXML
is an XML dialog language with the root element <vxml> with the
designated namespace ’http://www.w3.0rg/2001/vxml’ and standalone
documents are associated with the MIME media type 'application/
voicexml+xml’ [RFC4267].

This Control Package defines its own lightweight IVR dialog language.
The language has a root element (<dialog>) with the same designated
namespace as used for other elements defined in this package (see
Section 8.2). The root element contains child elements for playing
prompts to the user, specifying runtime controls, collecting DTMF
input from the user, and recording media input from the user. The
child elements can co-occur so as to provide 'play announcement’,
‘prompt and collect’, as well as 'prompt and record’ functionality.

The dialog management elements for preparing and starting a dialog
can specify the dialog language either by including inline a fragment
with the root element or by referencing an external dialog document.
The dialog language defined in this package is specified inline.

Other dialog languages, such as VoiceXML, can be used by referencing
an external dialog document.

The document is organized as follows. Section 3 describes how this
Control Package fulfills the requirements for a Media Control Channel
Framework Control Package. Section 4 describes the syntax and
semantics of defined elements, including dialog management
(Section 4.2), the IVR dialog element (Section 4.3), and audit

McGlashan, et al. Standards Track [Page 7]

RFC 6231 IVR Control Package May 2011

elements (Section 4.4). Section 5 describes an XML schema for these
elements and provides extensibility by allowing attributes and
elements from other namespaces. Section 6 provides examples of
package usage. Section 7 describes important security considerations
for use of this Control Package. Section 8 provides information on
IANA registration of this Control Package, including its name, XML
namespace, and MIME media type. It also establishes a registry for
prompt variables. Finally, Section 9 provides additional information

on using VoiceXML when supported as an external dialog language.

2. Conventions and Terminology

In this document, BCP 14 [RFC2119] defines the key words "MUST",

"MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL". In
addition, BCP 15 indicates requirement levels for compliant

implementations.

The following additional terms are defined for use in this document:

Dialog: A dialog performs media interaction with a user following
the concept of an IVR (Interactive Voice Response) dialog (this
sense of 'dialog’ is completely unrelated to a SIP dialog). A
dialog is specified as inline XML or via a URI reference to an
external dialog document. Traditional IVR dialogs typically
feature capabilities such as playing audio prompts, collecting
DTMF input, and recording audio input from the user. More
inclusive definitions include support for other media types,
runtime controls, synthesized speech, recording and playback of
video, recognition of spoken input, and mixed initiative
conversations.

Application Server: A SIP [RFC3261] application server (AS) hosts
and executes services such as interactive media and conferencing
in an operator’s network. An AS influences and impacts the SIP
session, in particular by terminating SIP sessions on a media
server, which is under its control.

Media Server: A media server (MS) processes media streams on behalf
of an AS by offering functionality such as interactive media,
conferencing, and transcoding to the end user. Interactive media
functionality is realized by way of dialogs that are initiated by
the application server.

McGlashan, et al. Standards Track [Page 8]

RFC 6231 IVR Control Package May 2011

3. Control Package Definition

This section fulfills the mandatory requirement for information that
MUST be specified during the definition of a Control Framework
Package, as detailed in Section 7 of [RFC6230].

3.1. Control Package Name

The Control Framework requires a Control Package to specify and
register a unique name.

The name of this Control Package is "msc-ivr/1.0" (Media Server
Control - Interactive Voice Response - version 1.0). Its IANA
registration is specified in Section 8.1.

Since this is the initial ("1.0") version of the Control Package,
there are no backwards-compatibility issues to address.

3.2. Framework Message Usage

The Control Framework requires a Control Package to explicitly detail
the CONTROL messages that can be used as well as provide an
indication of directionality between entities. This will include

which role type is allowed to initiate a request type.

This package specifies Control and response messages in terms of XML
elements defined in Section 4, where the message bodies have the MIME
media type defined in Section 8.4. These elements describe requests,
responses, and notifications and all are contained within a root

<mscivr> element (Section 4.1).

In this package, the MS operates as a Control Server in receiving
requests from, and sending responses to, the AS (operating as Control
Client). Dialog management requests and responses are defined in
Section 4.2. Audit requests and responses are defined in

Section 4.4. Dialog management and audit responses are carried in a
framework 200 response or REPORT message bodies. This package’s
response codes are defined in Section 4.5.

Note that package responses are different from framework response
codes. Framework error response codes (see Section 7 of [RFC6230])
are used when the request or event natification is invalid; for

example, a request is invalid XML (400), or not understood (500).

The MS also operates as a Control Client in sending event

notification to the AS (Control Server). Event notifications

(Section 4.2.5) are carried in CONTROL message bodies. The AS MUST
respond with a Control Framework 200 response.

McGlashan, et al. Standards Track [Page 9]

RFC 6231 IVR Control Package May 2011

3.3. Common XML Support

The Control Framework requires a Control Package definition to
specify if the attributes for media dialog or conference references
are required.

This package requires that the XML schema in Section A.1 of [RFC6230]
MUST be supported for media dialogs and conferences.

The package uses "connectionid" and "conferenceid" attributes for
various element definitions (Section 4). The XML schema (Section 5)
imports the definitions of these attributes from the framework
schema.

3.4. CONTROL Message Body

The Control Framework requires a Control Package to define the

control body that can be contained within a CONTROL command request
and to indicate the location of detailed syntax definitions and

semantics for the appropriate body types.

When operating as Control Server, the MS receives Control message
bodies with the MIME media type defined in Section 8.4 and containing
an <mscivr> element (Section 4.1) with either a dialog management or
audit request child element.

The following dialog management request elements are carried in
CONTROL message bodies to the MS: <dialogprepare> (Section 4.2.1),
<dialogstart> (Section 4.2.2), and <dialogterminate> (Section 4.2.3)
elements.

The <audit> request element (Section 4.4.1) is also carried in
CONTROL message bodies.

When operating as Control Client, the MS sends CONTROL messages with
the MIME media type defined in Section 8.4 and a body containing an
<mscivr> element (Section 4.1) with a notification <event> child

element (Section 4.2.5).

3.5. REPORT Message Body

The Control Framework requires a Control Package definition to define
the REPORT body that can be contained within a REPORT command
request, or that no report package body is required. This section
indicates the location of detailed syntax definitions and semantics

for the appropriate body types.

McGlashan, et al. Standards Track [Page 10]

RFC 6231 IVR Control Package May 2011

When operating as Control Server, the MS sends REPORT bodies with the
MIME media type defined in Section 8.4 and containing a <mscivr>
element (Section 4.1) with a response child element. The response
element for dialog management requests is a <response> element
(Section 4.2.4). The response element for an audit request is an
<auditresponse> element (Section 4.4.2).

3.6. Audit

The Control Framework encourages Control Packages to specify whether
auditing is available, how it is triggered, as well as the query/
response formats.

This Control Package supports auditing of package capabilities and
dialogs on the MS. An audit request is carried in a CONTROL message
(see Section 3.4) and an audit response in a REPORT message (or a 200
response to the CONTROL if it can execute the audit in time) (see
Section 3.5).

The syntax and semantics of audit request and response elements are
defined in Section 4.4.

3.7. Examples

The Control Framework recommends Control Packages to provide a range
of message flows that represent common flows using the package and
this framework document.

This Control Package provides examples of such message flows in
Section 6.

4. Element Definitions

This section defines the XML elements for this package. The elements
are defined in the XML namespace specified in Section 8.2.

The root element is <mscivr> (Section 4.1). All other XML elements
(requests, responses, and notification elements) are contained within
it. Child elements describe dialog management (Section 4.2) and
audit (Section 4.4) functionality. The IVR dialog element (contained
within dialog management elements) is defined in Section 4.3.
Response status codes are defined in Section 4.5 and type definitions
in Section 4.6.

Implementation of this Control Package MUST address the Security
Considerations described in Section 7.

McGlashan, et al. Standards Track [Page 11]

RFC 6231 IVR Control Package May 2011

Implementation of this Control Package MUST adhere to the syntax and
semantics of XML elements defined in this section and the schema
(Section 5). Since XML schema is unable to support some types of
syntactic constraints (such as attribute and element co-occurrence),
some elements in this package specify additional syntactic

constraints in their textual definition. If there is a difference in
constraints between the XML schema and the textual description of
elements in this section, the textual definition takes priority.

The XML schema supports extensibility by allowing attributes and
elements from other namespaces. Implementations MAY support
additional capabilities by means of attributes and elements from
other (foreign) namespaces. Attributes and elements from foreign
namespaces are not described in this section.

Some elements in this Control Package contain attributes whose value

is a URI. These elements include: <dialogprepare> (Section 4.2.1),
<dialogstart> (Section 4.2.2), <media> (Section 4.3.1.5), <grammar>
(Section 4.3.1.3.1), and <record> (Section 4.3.1.4). The MS MUST
support both HTTP [RFC2616] and HTTPS [RFC2818] protocol schemes for
fetching and uploading resources, and the MS MAY support other
schemes. The implementation SHOULD support storage of authentication
information as part of its configuration, including security

certificates for use with HTTPS. If the implementation wants to

support user authentication, user certifications and passwords can

also be stored as part of its configuration or the implementation can
extend the schema (adding, for example, an http-password attribute in

its own namespace) and then map user authentication information onto
the appropriate headers following the HTTP authentication model
[RFC2616].

Some elements in this Control Package contain attributes whose value
is descriptive text primarily for diagnostic use. The implementation
can indicate the language used in the descriptive text by means of a
‘desclang’ attribute ([RFC2277], [RFC5646]). The desclang attribute
can appear on the root element as well as selected subordinate
elements (see Section 4.1). The desclang attribute value on the root
element applies to all desclang attributes in subordinate elements
unless the subordinate element has an explicit desclang attribute

that overrides it.

Usage examples are provided in Section 6.
4.1. <mscivr>

The <mscivr> element has the following attributes (in addition to
standard XML namespace attributes such as xmins):

McGlashan, et al. Standards Track [Page 12]

RFC 6231 IVR Control Package May 2011

version: a string specifying the mscivr package version. The value
is fixed as '1.0’ for this version of the package. The attribute
iS mandatory.

desclang: specifies the language used in descriptive text attributes
of subordinate elements (unless the subordinate element provides a
desclang attribute that overrides the value for its descriptive
text attributes). The descriptive text attributes on subordinate
elements include: the reason attribute on <response>
(Section 4.2.4), <dialogexit> (Section 4.2.5.1), and
<auditresponse> (Section 4.4.2); desc attribute on <variabletype>
and <format> (Section 4.4.2.2.5.1). A valid value is a language
identifier (Section 4.6.11). The attribute is optional. The
default value is i-default (BCP 47 [RFC5646]).

The <mscivr> element has the following defined child elements, only
one of which can occur:

1. dialog management elements defined in Section 4.2:
<dialogprepare> prepare a dialog. See Section 4.2.1.
<dialogstart> start a dialog. See Section 4.2.2.
<dialogterminate> terminate a dialog. See Section 4.2.3.
<response> response to a dialog request. See Section 4.2.4.
<event> dialog or subscription notification. See Section 4.2.5.

2. audit elements defined in Section 4.4:

<audit> audit package capabilities and managed dialogs. See
Section 4.4.1.

<auditresponse> response to an audit request. See
Section 4.4.2.

For example, a request to the MS to start an IVR dialog playing a
prompt:

McGlashan, et al. Standards Track [Page 13]

RFC 6231 IVR Control Package May 2011

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<dialogstart connectionid="ssd3r3:sds345b">
<dialog>
<prompt>
<media loc="http://www.example.com/welcome.wav"/>
</prompt>
</dialog>
</dialogstart>
</mscivr>

and a response from the MS that the dialog started successfully:

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" dialogid="d1"/>
</mscivr>

and finally a notification from the MS indicating that the dialog
exited upon completion of playing the prompt:

<mscivr version="1.0" xmIns="urn:ietf:params:xml:ns:msc-ivr"
desclang="en">

<event dialogid="d1">
<dialogexit status="1" reason="successful completion of the dialog">
<promptinfo termmode="completed"/>
</dialogexit>

</event>

</mscivr>

The language of the descriptive text in the reason attribute of
<dialogexit> is explicitly indicated by the desclang attribute of the
<mscivr> root element.

4.2. Dialog Management Elements
This section defines the dialog management XML elements for this
Control Package. These elements are divided into requests,
responses, and natifications.
Request elements are sent to the MS to request a specific dialog
operation to be executed. The following request elements are
defined:
<dialogprepare>: prepare a dialog for later execution

<dialogstart>: start a (prepared) dialog on a connection or
conference

<dialogterminate>: terminate a dialog

McGlashan, et al. Standards Track [Page 14]

RFC 6231 IVR Control Package May 2011

Responses from the MS describe the status of the requested operation.
Responses are specified in a <response> element (Section 4.2.4) that
includes a mandatory attribute describing the status in terms of a
numeric code. Response status codes are defined in Section 4.5. The
MS MUST respond to a request message with a response message. If the
MS is not able to process the request and carry out the dialog
operation, the request has failed and the MS MUST indicate the class
of failure using an appropriate 4xx response code. Unless an error
response code is specified for a class of error within this section,
implementations follow Section 4.5 in determining the appropriate
status code for the response.

Notifications are sent from the MS to provide updates on the status

of a dialog or operations defined within the dialog. Notifications
are specified in an <event> element (Section 4.2.5).

McGlashan, et al. Standards Track [Page 15]

RFC 6231

<dialogpr

IVR Control Package May 2011

epare>/| |<dialogstart>/

+

<

[/200 res

/dialogexit notif
(timeout)

/ERROR response +

[+------ >-+

ISTARTING | |

/
ponse

/200 response|
| [|
| | |
/ |
/<dialogstart>/ \Y;

|
| STARTED |

/

--------- |
4> |

+| <dialogterminate>/|
[| 200 response

<dialogterminate>/ | [
200 response | |
+ |/dialogexit ||
/dialogexit | notification | |
notification | ||

ication||

A"

>| + /ERROR response|

>|TERMINATED |<

+
T

+
T

<dialogterminate>/ | [<
410 response + <dialogterminate>/410 response

Figure 1: Dialog Lifecycle

The MS implementation MUST adhere to the dialog lifecycle shown in
Figure 1, where each dialog has the following states:

McGlashan, et al. Standards Track [Page 16]

RFC 6231 IVR Control Package May 2011

IDLE: the dialog is uninitialized.

PREPARING: the dialog is being prepared. The dialog is assigned a
valid dialog identifier (see below). If an error occurs, the
dialog transitions to the TERMINATED state and the MS MUST send a
response indicating the error. If the dialog is terminated before
preparation is complete, the dialog transitions to the TERMINATED
state and the MS MUST send a 410 response (Section 4.5) for the
prepare request.

PREPARED: the dialog has been successfully prepared and the MS MUST
send a 200 response indicating the prepare operation was
successful. If the dialog is terminated, then the MS MUST send a
200 response, the dialog transitions to the TERMINATED state and
the MS MUST send a dialogexit notification event (see
Section 4.2.5.1). If the duration the dialog remains in the
PREPARED state exceeds the maximum preparation duration, the
dialog transitions to the TERMINATED state and the MS MUST send a
dialogexit notification with the appropriate error status code
(see Section 4.2.5.1). A maximum preparation duration of 300s is
RECOMMENDED.

STARTING: the dialog is being started. If the dialog has not
already been prepared, it is first prepared and assigned a valid
dialog identifier (see below). If an error occurs the dialog
transitions to the TERMINATED state and the MS MUST send a
response indicating the error. If the dialog is terminated, the
dialog transitions to the TERMINATED state and the MS MUST send a
410 response (Section 4.5) for the start request.

STARTED: the dialog has been successfully started and is now active.
The MS MUST send a 200 response indicating the start operation was
successful. If any dialog events occur that were subscribed to,
the MS MUST send a notifications when the dialog event occurs.
When the dialog exits (due to normal termination, an error, or a
terminate request), the MS MUST send a dialogexit notification
event (see Section 4.2.5.1) and the dialog transitions to the
TERMINATED state.

TERMINATED: the dialog is terminated and its dialog identifier is no
longer valid. Dialog notifications MUST NOT be sent for this
dialog.

Each dialog has a valid identifier until it transitions to a

TERMINATED state. The dialog identifier is assigned by the MS unless
the <dialogprepare> or <dialogstart> request already specifies a

McGlashan, et al. Standards Track [Page 17]

RFC 6231 IVR Control Package May 2011

identifier (dialogid) that is not associated with any other dialog on
the MS. Once a dialog is in a TERMINATED state, its dialog
identifier is no longer valid and can be reused for another dialog.

The identifier is used to reference the dialog in subsequent
requests, responses, and notifications. In a <dialogstart> request,
the dialog identifier can be specified in the prepareddialogid
attribute indicating the prepared dialog to start. In
<dialogterminate> and <audit> requests, the dialog identifier is
specified in the dialogid attribute, indicating which dialog is to be
terminated or audited, respectively. If these requests specify a
dialog identifier already associated with another dialog on the MS,
the MS sends a response with a 405 status code (see Section 4.5) and
the same dialogid as in the request. The MS MUST specify a dialog
identifier in notifications associated with the dialog. The MS MUST
specify a dialog identifier in responses unless it is a response to a
syntactically invalid request.

For a given dialog, the <dialogprepare> or <dialogstart> request
elements specify the dialog content to execute either by including
inline a <dialog> element (the dialog language defined in this

package; see Section 4.3) or by referencing an external dialog
document (a dialog language defined outside this package). When
referencing an external dialog document, the request element contains
a URI reference to the remote document (specifying the dialog
definition) and, optionally, a type attribute indicating the MIME

media type associated with the dialog document. Consequently, the
dialog language associated with a dialog on the MS is identified

either inline by a <dialog> child element or by a src attribute
referencing a document containing the dialog language. The MS MUST
support inline the IVR dialog language defined in Section 4.3. The

MS MAY support other dialog languages by reference.

4.2.1. <dialo