
Network Working Group T. Krovetz, Ed.
Request for Comments: 4418 CSU Sacramento
Category: Informational March 2006

 UMAC: Message Authentication Code using Universal Hashing

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This specification describes how to generate an authentication tag
 using the UMAC message authentication algorithm. UMAC is designed to
 be very fast to compute in software on contemporary uniprocessors.
 Measured speeds are as low as one cycle per byte. UMAC relies on
 addition of 32-bit and 64-bit numbers and multiplication of 32-bit
 numbers, operations well-supported by contemporary machines.

 To generate the authentication tag on a given message, a "universal"
 hash function is applied to the message and key to produce a short,
 fixed-length hash value, and this hash value is then xor’ed with a
 key-derived pseudorandom pad. UMAC enjoys a rigorous security
 analysis, and its only internal "cryptographic" component is a block
 cipher used to generate the pseudorandom pads and internal key
 material.

Krovetz Informational [Page 1]

RFC 4418 UMAC March 2006

Table of Contents

 1. Introduction ..3
 2. Notation and Basic Operations4
 2.1. Operations on strings4
 2.2. Operations on Integers5
 2.3. String-Integer Conversion Operations6
 2.4. Mathematical Operations on Strings6
 2.5. ENDIAN-SWAP: Adjusting Endian Orientation6
 2.5.1. ENDIAN-SWAP Algorithm6
 3. Key- and Pad-Derivation Functions7
 3.1. Block Cipher Choice ..7
 3.2. KDF: Key-Derivation Function8
 3.2.1. KDF Algorithm8
 3.3. PDF: Pad-Derivation Function8
 3.3.1. PDF Algorithm9
 4. UMAC Tag Generation ..10
 4.1. UMAC Algorithm ..10
 4.2. UMAC-32, UMAC-64, UMAC-96, and UMAC-12810
 5. UHASH: Universal Hash Function10
 5.1. UHASH Algorithm ...11
 5.2. L1-HASH: First-Layer Hash12
 5.2.1. L1-HASH Algorithm12
 5.2.2. NH Algorithm13
 5.3. L2-HASH: Second-Layer Hash14
 5.3.1. L2-HASH Algorithm14
 5.3.2. POLY Algorithm15
 5.4. L3-HASH: Third-Layer Hash16
 5.4.1. L3-HASH Algorithm16
 6. Security Considerations ..17
 6.1. Resistance to Cryptanalysis17
 6.2. Tag Lengths and Forging Probability17
 6.3. Nonce Considerations19
 6.4. Replay Attacks ..20
 6.5. Tag-Prefix Verification21
 6.6. Side-Channel Attacks21
 7. Acknowledgements ...21
 Appendix. Test Vectors ..22
 References ..24
 Normative References ...24
 Informative References ...24

Krovetz Informational [Page 2]

RFC 4418 UMAC March 2006

1. Introduction

 UMAC is a message authentication code (MAC) algorithm designed for
 high performance. It is backed by a rigorous formal analysis, and
 there are no intellectual property claims made by any of the authors
 to any ideas used in its design.

 UMAC is a MAC in the style of Wegman and Carter [4, 7]. A fast
 "universal" hash function is used to hash an input message M into a
 short string. This short string is then masked by xor’ing with a
 pseudorandom pad, resulting in the UMAC tag. Security depends on the
 sender and receiver sharing a randomly-chosen secret hash function
 and pseudorandom pad. This is achieved by using keyed hash function
 H and pseudorandom function F. A tag is generated by performing the
 computation

 Tag = H_K1(M) xor F_K2(Nonce)

 where K1 and K2 are secret random keys shared by sender and receiver,
 and Nonce is a value that changes with each generated tag. The
 receiver needs to know which nonce was used by the sender, so some
 method of synchronizing nonces needs to be used. This can be done by
 explicitly sending the nonce along with the message and tag, or
 agreeing upon the use of some other non-repeating value such as a
 sequence number. The nonce need not be kept secret, but care needs
 to be taken to ensure that, over the lifetime of a UMAC key, a
 different nonce is used with each message.

 UMAC uses a keyed function, called UHASH (also specified in this
 document), as the keyed hash function H and uses a pseudorandom
 function F whose default implementation uses the Advanced Encryption
 Standard (AES) algorithm. UMAC is designed to produce 32-, 64-, 96-,
 or 128-bit tags, depending on the desired security level. The theory
 of Wegman-Carter MACs and the analysis of UMAC show that if one
 "instantiates" UMAC with truly random keys and pads then the
 probability that an attacker (even a computationally unbounded one)
 produces a correct tag for any message of its choosing is no more
 than 1/2^30, 1/2^60, 1/2^90, or 1/2^120 if the tags output by UMAC
 are of length 32, 64, 96, or 128 bits, respectively (here the symbol
 ^ represents exponentiation). When an attacker makes N forgery
 attempts, the probability of getting one or more tags right increases
 linearly to at most N/2^30, N/2^60, N/2^90, or N/2^120. In a real
 implementation of UMAC, using AES to produce keys and pads, the
 forgery probabilities listed above increase by a small amount related
 to the security of AES. As long as AES is secure, this small
 additive term is insignificant for any practical attack. See Section
 6.2 for more details. Analysis relevant to UMAC security is in
 [3, 6].

Krovetz Informational [Page 3]

RFC 4418 UMAC March 2006

 UMAC performs best in environments where 32-bit quantities are
 efficiently multiplied into 64-bit results. In producing 64-bit tags
 on an Intel Pentium 4 using SSE2 instructions, which do two of these
 multiplications in parallel, UMAC processes messages at a peak rate
 of about one CPU cycle per byte, with the peak being achieved on
 messages of around four kilobytes and longer. On the Pentium III,
 without the use of SSE parallelism, UMAC achieves a peak of two
 cycles per byte. On shorter messages, UMAC still performs well:
 around four cycles per byte on 256-byte messages and under two cycles
 per byte on 1500-byte messages. The time to produce a 32-bit tag is
 a little more than half that needed to produce a 64-bit tag, while
 96- and 128-bit tags take one-and-a-half and twice as long,
 respectively.

 Optimized source code, performance data, errata, and papers
 concerning UMAC can be found at
 http://www.cs.ucdavis.edu/˜rogaway/umac/.

2. Notation and Basic Operations

 The specification of UMAC involves the manipulation of both strings
 and numbers. String variables are denoted with an initial uppercase
 letter, whereas numeric variables are denoted in all lowercase. The
 algorithms of UMAC are denoted in all uppercase letters. Simple
 functions, like those for string-length and string-xor, are written
 in all lowercase.

 Whenever a variable is followed by an underscore ("_"), the
 underscore is intended to denote a subscript, with the subscripted
 expression evaluated to resolve the meaning of the variable. For
 example, if i=2, then M_{2 * i} refers to the variable M_4.

2.1. Operations on strings

 Messages to be hashed are viewed as strings of bits that get zero-
 padded to an appropriate byte length. Once the message is padded,
 all strings are viewed as strings of bytes. A "byte" is an 8-bit
 string. The following notation is used to manipulate these strings.

 bytelength(S): The length of string S in bytes.

 bitlength(S): The length of string S in bits.

 zeroes(n): The string made of n zero-bytes.

 S xor T: The string that is the bitwise exclusive-or of S
 and T. Strings S and T always have the same
 length.

Krovetz Informational [Page 4]

RFC 4418 UMAC March 2006

 S and T: The string that is the bitwise conjunction of S
 and T. Strings S and T always have the same
 length.

 S[i]: The i-th byte of the string S (indices begin at
 1).

 S[i...j]: The substring of S consisting of bytes i through
 j.

 S || T: The string S concatenated with string T.

 zeropad(S,n): The string S, padded with zero-bits to the
 nearest positive multiple of n bytes. Formally,
 zeropad(S,n) = S || T, where T is the shortest
 string of zero-bits (possibly empty) so that S
 || T is non-empty and 8n divides bitlength(S ||
 T).

2.2. Operations on Integers

 Standard notation is used for most mathematical operations, such as
 "*" for multiplication, "+" for addition and "mod" for modular
 reduction. Some less standard notations are defined here.

 a^i: The integer a raised to the i-th power.

 ceil(x): The smallest integer greater than or equal to x.

 prime(n): The largest prime number less than 2^n.

 The prime numbers used in UMAC are:

 +-----+--------------------+---------------------------------------+
 | n | prime(n) [Decimal] | prime(n) [Hexadecimal] |
 +-----+--------------------+---------------------------------------+
 | 36 | 2^36 - 5 | 0x0000000F FFFFFFFB |
 | 64 | 2^64 - 59 | 0xFFFFFFFF FFFFFFC5 |
 | 128 | 2^128 - 159 | 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFF61 |
 +-----+--------------------+---------------------------------------+

Krovetz Informational [Page 5]

RFC 4418 UMAC March 2006

2.3. String-Integer Conversion Operations

 Conversion between strings and integers is done using the following
 functions. Each function treats initial bits as more significant
 than later ones.

 bit(S,n): Returns the integer 1 if the n-th bit of the string
 S is 1, otherwise returns the integer 0 (indices
 begin at 1).

 str2uint(S): The non-negative integer whose binary
 representation is the string S. More formally, if
 S is t bits long then str2uint(S) = 2^{t-1} *
 bit(S,1) + 2^{t-2} * bit(S,2) + ... + 2^{1} *
 bit(S,t-1) + bit(S,t).

 uint2str(n,i): The i-byte string S such that str2uint(S) = n.

2.4. Mathematical Operations on Strings

 One of the primary operations in UMAC is repeated application of
 addition and multiplication on strings. The operations "+_32",
 "+_64", and "*_64" are defined

 "S +_32 T" as uint2str(str2uint(S) + str2uint(T) mod 2^32, 4),
 "S +_64 T" as uint2str(str2uint(S) + str2uint(T) mod 2^64, 8), and
 "S *_64 T" as uint2str(str2uint(S) * str2uint(T) mod 2^64, 8).

 These operations correspond well with the addition and multiplication
 operations that are performed efficiently by modern computers.

2.5. ENDIAN-SWAP: Adjusting Endian Orientation

 Message data is read little-endian to speed tag generation on
 little-endian computers.

2.5.1. ENDIAN-SWAP Algorithm

 Input:
 S, string with length divisible by 4 bytes.
 Output:
 T, string S with each 4-byte word endian-reversed.

 Compute T using the following algorithm.

 //
 // Break S into 4-byte chunks
 //

Krovetz Informational [Page 6]

RFC 4418 UMAC March 2006

 n = bytelength(S) / 4
 Let S_1, S_2, ..., S_n be strings of length 4 bytes
 so that S_1 || S_2 || ... || S_n = S.

 //
 // Byte-reverse each chunk, and build-up T
 //
 T = <empty string>
 for i = 1 to n do
 Let W_1, W_2, W_3, W_4 be bytes
 so that W_1 || W_2 || W_3 || W_4 = S_i
 SReversed_i = W_4 || W_3 || W_2 || W_1
 T = T || SReversed_i
 end for

 Return T

3. Key- and Pad-Derivation Functions

 Pseudorandom bits are needed internally by UHASH and at the time of
 tag generation. The functions listed in this section use a block
 cipher to generate these bits.

3.1. Block Cipher Choice

 UMAC uses the services of a block cipher. The selection of a block
 cipher defines the following constants and functions.

 BLOCKLEN The length, in bytes, of the plaintext block on
 which the block cipher operates.

 KEYLEN The block cipher’s key length, in bytes.

 ENCIPHER(K,P) The application of the block cipher on P (a
 string of BLOCKLEN bytes) using key K (a string
 of KEYLEN bytes).

 As an example, if AES is used with 16-byte keys, then BLOCKLEN would
 equal 16 (because AES employs 16-byte blocks), KEYLEN would equal 16,
 and ENCIPHER would refer to the AES function.

 Unless specified otherwise, AES with 128-bit keys shall be assumed to
 be the chosen block cipher for UMAC. Only if explicitly specified
 otherwise, and agreed to by communicating parties, shall some other
 block cipher be used. In any case, BLOCKLEN must be at least 16 and
 a power of two.

 AES is defined in another document [1].

Krovetz Informational [Page 7]

RFC 4418 UMAC March 2006

3.2. KDF: Key-Derivation Function

 The key-derivation function generates pseudorandom bits used to key
 the hash functions.

3.2.1. KDF Algorithm

 Input:
 K, string of length KEYLEN bytes.
 index, a non-negative integer less than 2^64.
 numbytes, a non-negative integer less than 2^64.
 Output:
 Y, string of length numbytes bytes.

 Compute Y using the following algorithm.

 //
 // Calculate number of block cipher iterations
 //
 n = ceil(numbytes / BLOCKLEN)
 Y = <empty string>

 //
 // Build Y using block cipher in a counter mode
 //
 for i = 1 to n do
 T = uint2str(index, BLOCKLEN-8) || uint2str(i, 8)
 T = ENCIPHER(K, T)
 Y = Y || T
 end for

 Y = Y[1...numbytes]

 Return Y

3.3. PDF: Pad-Derivation Function

 This function takes a key and a nonce and returns a pseudorandom pad
 for use in tag generation. A pad of length 4, 8, 12, or 16 bytes can
 be generated. Notice that pads generated using nonces that differ
 only in their last bit (when generating 8-byte pads) or last two bits
 (when generating 4-byte pads) are derived from the same block cipher
 encryption. This allows caching and sharing a single block cipher
 invocation for sequential nonces.

Krovetz Informational [Page 8]

RFC 4418 UMAC March 2006

3.3.1. PDF Algorithm

 Input:
 K, string of length KEYLEN bytes.
 Nonce, string of length 1 to BLOCKLEN bytes.
 taglen, the integer 4, 8, 12 or 16.
 Output:
 Y, string of length taglen bytes.

 Compute Y using the following algorithm.

 //
 // Extract and zero low bit(s) of Nonce if needed
 //
 if (taglen = 4 or taglen = 8)
 index = str2uint(Nonce) mod (BLOCKLEN/taglen)
 Nonce = Nonce xor uint2str(index, bytelength(Nonce))
 end if

 //
 // Make Nonce BLOCKLEN bytes by appending zeroes if needed
 //
 Nonce = Nonce || zeroes(BLOCKLEN - bytelength(Nonce))

 //
 // Generate subkey, encipher and extract indexed substring
 //
 K’ = KDF(K, 0, KEYLEN)
 T = ENCIPHER(K’, Nonce)
 if (taglen = 4 or taglen = 8)
 Y = T[1 + (index*taglen) ... taglen + (index*taglen)]
 else
 Y = T[1...taglen]
 end if

 Return Y

Krovetz Informational [Page 9]

RFC 4418 UMAC March 2006

4. UMAC Tag Generation

 Tag generation for UMAC proceeds by using UHASH (defined in the next
 section) to hash the message, applying the PDF to the nonce, and
 computing the xor of the resulting strings. The length of the pad
 and hash can be either 4, 8, 12, or 16 bytes.

4.1. UMAC Algorithm

 Input:
 K, string of length KEYLEN bytes.
 M, string of length less than 2^67 bits.
 Nonce, string of length 1 to BLOCKLEN bytes.
 taglen, the integer 4, 8, 12 or 16.
 Output:
 Tag, string of length taglen bytes.

 Compute Tag using the following algorithm.

 HashedMessage = UHASH(K, M, taglen)
 Pad = PDF(K, Nonce, taglen)
 Tag = Pad xor HashedMessage

 Return Tag

4.2. UMAC-32, UMAC-64, UMAC-96, and UMAC-128

 The preceding UMAC definition has a parameter "taglen", which
 specifies the length of tag generated by the algorithm. The
 following aliases define names that make tag length explicit in the
 name.

 UMAC-32(K, M, Nonce) = UMAC(K, M, Nonce, 4)
 UMAC-64(K, M, Nonce) = UMAC(K, M, Nonce, 8)
 UMAC-96(K, M, Nonce) = UMAC(K, M, Nonce, 12)
 UMAC-128(K, M, Nonce) = UMAC(K, M, Nonce, 16)

5. UHASH: Universal Hash Function

 UHASH is a keyed hash function, which takes as input a string of
 arbitrary length, and produces a 4-, 8-, 12-, or 16-byte output.
 UHASH does its work in three stages, or layers. A message is first
 hashed by L1-HASH, its output is then hashed by L2-HASH, whose output
 is then hashed by L3-HASH. If the message being hashed is no longer
 than 1024 bytes, then L2-HASH is skipped as an optimization. Because
 L3-HASH outputs a string whose length is only four bytes long,
 multiple iterations of this three-layer hash are used if a total
 hash-output longer than four bytes is requested. To reduce memory

Krovetz Informational [Page 10]

RFC 4418 UMAC March 2006

 use, L1-HASH reuses most of its key material between iterations. A
 significant amount of internal key is required for UHASH, but it
 remains constant so long as UMAC’s key is unchanged. It is the
 implementer’s choice whether to generate the internal keys each time
 a message is hashed, or to cache them between messages.

 Please note that UHASH has certain combinatoric properties making it
 suitable for Wegman-Carter message authentication. UHASH is not a
 cryptographic hash function and is not a suitable general replacement
 for functions like SHA-1.

 UHASH is presented here in a top-down manner. First, UHASH is
 described, then each of its component hashes is presented.

5.1. UHASH Algorithm

 Input:
 K, string of length KEYLEN bytes.
 M, string of length less than 2^67 bits.
 taglen, the integer 4, 8, 12 or 16.
 Output:
 Y, string of length taglen bytes.

 Compute Y using the following algorithm.

 //
 // One internal iteration per 4 bytes of output
 //
 iters = taglen / 4

 //
 // Define total key needed for all iterations using KDF.
 // L1Key reuses most key material between iterations.
 //
 L1Key = KDF(K, 1, 1024 + (iters - 1) * 16)
 L2Key = KDF(K, 2, iters * 24)
 L3Key1 = KDF(K, 3, iters * 64)
 L3Key2 = KDF(K, 4, iters * 4)

 //
 // For each iteration, extract key and do three-layer hash.
 // If bytelength(M) <= 1024, then skip L2-HASH.
 //
 Y = <empty string>
 for i = 1 to iters do
 L1Key_i = L1Key [(i-1) * 16 + 1 ... (i-1) * 16 + 1024]
 L2Key_i = L2Key [(i-1) * 24 + 1 ... i * 24]
 L3Key1_i = L3Key1[(i-1) * 64 + 1 ... i * 64]

Krovetz Informational [Page 11]

RFC 4418 UMAC March 2006

 L3Key2_i = L3Key2[(i-1) * 4 + 1 ... i * 4]

 A = L1-HASH(L1Key_i, M)
 if (bitlength(M) <= bitlength(L1Key_i)) then
 B = zeroes(8) || A
 else
 B = L2-HASH(L2Key_i, A)
 end if
 C = L3-HASH(L3Key1_i, L3Key2_i, B)
 Y = Y || C
 end for

 Return Y

5.2. L1-HASH: First-Layer Hash

 The first-layer hash breaks the message into 1024-byte chunks and
 hashes each with a function called NH. Concatenating the results
 forms a string, which is up to 128 times shorter than the original.

5.2.1. L1-HASH Algorithm

 Input:
 K, string of length 1024 bytes.
 M, string of length less than 2^67 bits.
 Output:
 Y, string of length (8 * ceil(bitlength(M)/8192)) bytes.

 Compute Y using the following algorithm.

 //
 // Break M into 1024 byte chunks (final chunk may be shorter)
 //
 t = max(ceil(bitlength(M)/8192), 1)
 Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || ... ||
 M_t, and bytelength(M_i) = 1024 for all 0 < i < t.

 //
 // For each chunk, except the last: endian-adjust, NH hash
 // and add bit-length. Use results to build Y.
 //
 Len = uint2str(1024 * 8, 8)
 Y = <empty string>
 for i = 1 to t-1 do
 ENDIAN-SWAP(M_i)
 Y = Y || (NH(K, M_i) +_64 Len)
 end for

Krovetz Informational [Page 12]

RFC 4418 UMAC March 2006

 //
 // For the last chunk: pad to 32-byte boundary, endian-adjust,
 // NH hash and add bit-length. Concatenate the result to Y.
 //
 Len = uint2str(bitlength(M_t), 8)
 M_t = zeropad(M_t, 32)
 ENDIAN-SWAP(M_t)
 Y = Y || (NH(K, M_t) +_64 Len)

 return Y

5.2.2. NH Algorithm

 Because this routine is applied directly to every bit of input data,
 optimized implementation of it yields great benefit.

 Input:
 K, string of length 1024 bytes.
 M, string with length divisible by 32 bytes.
 Output:
 Y, string of length 8 bytes.

 Compute Y using the following algorithm.

 //
 // Break M and K into 4-byte chunks
 //
 t = bytelength(M) / 4
 Let M_1, M_2, ..., M_t be 4-byte strings
 so that M = M_1 || M_2 || ... || M_t.
 Let K_1, K_2, ..., K_t be 4-byte strings
 so that K_1 || K_2 || ... || K_t is a prefix of K.

 //
 // Perform NH hash on the chunks, pairing words for multiplication
 // which are 4 apart to accommodate vector-parallelism.
 //
 Y = zeroes(8)
 i = 1
 while (i < t) do
 Y = Y +_64 ((M_{i+0} +_32 K_{i+0}) *_64 (M_{i+4} +_32 K_{i+4}))
 Y = Y +_64 ((M_{i+1} +_32 K_{i+1}) *_64 (M_{i+5} +_32 K_{i+5}))
 Y = Y +_64 ((M_{i+2} +_32 K_{i+2}) *_64 (M_{i+6} +_32 K_{i+6}))
 Y = Y +_64 ((M_{i+3} +_32 K_{i+3}) *_64 (M_{i+7} +_32 K_{i+7}))
 i = i + 8
 end while

 Return Y

Krovetz Informational [Page 13]

RFC 4418 UMAC March 2006

5.3. L2-HASH: Second-Layer Hash

 The second-layer rehashes the L1-HASH output using a polynomial hash
 called POLY. If the L1-HASH output is long, then POLY is called once
 on a prefix of the L1-HASH output and called using different settings
 on the remainder. (This two-step hashing of the L1-HASH output is
 needed only if the message length is greater than 16 megabytes.)
 Careful implementation of POLY is necessary to avoid a possible
 timing attack (see Section 6.6 for more information).

5.3.1. L2-HASH Algorithm

 Input:
 K, string of length 24 bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length 16 bytes.

 Compute y using the following algorithm.

 //
 // Extract keys and restrict to special key-sets
 //
 Mask64 = uint2str(0x01ffffff01ffffff, 8)
 Mask128 = uint2str(0x01ffffff01ffffff01ffffff01ffffff, 16)
 k64 = str2uint(K[1...8] and Mask64)
 k128 = str2uint(K[9...24] and Mask128)

 //
 // If M is no more than 2^17 bytes, hash under 64-bit prime,
 // otherwise, hash first 2^17 bytes under 64-bit prime and
 // remainder under 128-bit prime.
 //
 if (bytelength(M) <= 2^17) then // 2^14 64-bit words

 //
 // View M as an array of 64-bit words, and use POLY modulo
 // prime(64) (and with bound 2^64 - 2^32) to hash it.
 //
 y = POLY(64, 2^64 - 2^32, k64, M)
 else
 M_1 = M[1...2^17]
 M_2 = M[2^17 + 1 ... bytelength(M)]
 M_2 = zeropad(M_2 || uint2str(0x80,1), 16)
 y = POLY(64, 2^64 - 2^32, k64, M_1)
 y = POLY(128, 2^128 - 2^96, k128, uint2str(y, 16) || M_2)
 end if

Krovetz Informational [Page 14]

RFC 4418 UMAC March 2006

 Y = uint2str(y, 16)

 Return Y

5.3.2. POLY Algorithm

 Input:
 wordbits, the integer 64 or 128.
 maxwordrange, positive integer less than 2^wordbits.
 k, integer in the range 0 ... prime(wordbits) - 1.
 M, string with length divisible by (wordbits / 8) bytes.
 Output:
 y, integer in the range 0 ... prime(wordbits) - 1.

 Compute y using the following algorithm.

 //
 // Define constants used for fixing out-of-range words
 //
 wordbytes = wordbits / 8
 p = prime(wordbits)
 offset = 2^wordbits - p
 marker = p - 1

 //
 // Break M into chunks of length wordbytes bytes
 //
 n = bytelength(M) / wordbytes
 Let M_1, M_2, ..., M_n be strings of length wordbytes bytes
 so that M = M_1 || M_2 || ... || M_n

 //
 // Each input word m is compared with maxwordrange. If not smaller
 // then ’marker’ and (m - offset), both in range, are hashed.
 //
 y = 1
 for i = 1 to n do
 m = str2uint(M_i)
 if (m >= maxwordrange) then
 y = (k * y + marker) mod p
 y = (k * y + (m - offset)) mod p
 else
 y = (k * y + m) mod p
 end if
 end for

 Return y

Krovetz Informational [Page 15]

RFC 4418 UMAC March 2006

5.4. L3-HASH: Third-Layer Hash

 The output from L2-HASH is 16 bytes long. This final hash function
 hashes the 16-byte string to a fixed length of 4 bytes.

5.4.1. L3-HASH Algorithm

 Input:
 K1, string of length 64 bytes.
 K2, string of length 4 bytes.
 M, string of length 16 bytes.
 Output:
 Y, string of length 4 bytes.

 Compute Y using the following algorithm.

 y = 0

 //
 // Break M and K1 into 8 chunks and convert to integers
 //
 for i = 1 to 8 do
 M_i = M [(i - 1) * 2 + 1 ... i * 2]
 K_i = K1[(i - 1) * 8 + 1 ... i * 8]
 m_i = str2uint(M_i)
 k_i = str2uint(K_i) mod prime(36)
 end for

 //
 // Inner-product hash, extract last 32 bits and affine-translate
 //
 y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(36)
 y = y mod 2^32
 Y = uint2str(y, 4)
 Y = Y xor K2

 Return Y

Krovetz Informational [Page 16]

RFC 4418 UMAC March 2006

6. Security Considerations

 As a message authentication code specification, this entire document
 is about security. Here we describe some security considerations
 important for the proper understanding and use of UMAC.

6.1. Resistance to Cryptanalysis

 The strength of UMAC depends on the strength of its underlying
 cryptographic functions: the key-derivation function (KDF) and the
 pad-derivation function (PDF). In this specification, both
 operations are implemented using a block cipher, by default the
 Advanced Encryption Standard (AES). However, the design of UMAC
 allows for the replacement of these components. Indeed, it is
 possible to use other block ciphers or other cryptographic objects,
 such as (properly keyed) SHA-1 or HMAC for the realization of the KDF
 or PDF.

 The core of the UMAC design, the UHASH function, does not depend on
 cryptographic assumptions: its strength is specified by a purely
 mathematical property stated in terms of collision probability, and
 this property is proven unconditionally [3, 6]. This means the
 strength of UHASH is guaranteed regardless of advances in
 cryptanalysis.

 The analysis of UMAC [3, 6] shows this scheme to have provable
 security, in the sense of modern cryptography, by way of tight
 reductions. What this means is that an adversarial attack on UMAC
 that forges with probability that significantly exceeds the
 established collision probability of UHASH will give rise to an
 attack of comparable complexity. This attack will break the block
 cipher, in the sense of distinguishing the block cipher from a family
 of random permutations. This design approach essentially obviates
 the need for cryptanalysis on UMAC: cryptanalytic efforts might as
 well focus on the block cipher, the results imply.

6.2. Tag Lengths and Forging Probability

 A MAC algorithm is used to authenticate messages between two parties
 that share a secret MAC key K. An authentication tag is computed for
 a message using K and, in some MAC algorithms such as UMAC, a nonce.
 Messages transmitted between parties are accompanied by their tag
 and, possibly, nonce. Breaking the MAC means that the attacker is
 able to generate, on its own, with no knowledge of the key K, a new
 message M (i.e., one not previously transmitted between the
 legitimate parties) and to compute on M a correct authentication tag
 under the key K. This is called a forgery. Note that if the
 authentication tag is specified to be of length t, then the attacker

Krovetz Informational [Page 17]

RFC 4418 UMAC March 2006

 can trivially break the MAC with probability 1/2^t. For this, the
 attacker can just generate any message of its choice and try a random
 tag; obviously, the tag is correct with probability 1/2^t. By
 repeated guesses, the attacker can increase linearly its probability
 of success.

 In the case of UMAC-64, for example, the above guessing-attack
 strategy is close to optimal. An adversary can correctly guess an
 8-byte UMAC tag with probability 1/2^64 by simply guessing a random
 value. The results of [3, 6] show that no attack strategy can
 produce a correct tag with probability better than 1/2^60 if UMAC
 were to use a random function in its work rather than AES. Another
 result [2], when combined with [3, 6], shows that so long as AES is
 secure as a pseudorandom permutation, it can be used instead of a
 random function without significantly increasing the 1/2^60 forging
 probability, assuming that no more than 2^64 messages are
 authenticated. Likewise, 32-, 96-, and 128-bit tags cannot be forged
 with more than 1/2^30, 1/2^90, and 1/2^120 probability plus the
 probability of a successful attack against AES as a pseudorandom
 permutation.

 AES has undergone extensive study and is assumed to be very secure as
 a pseudorandom permutation. If we assume that no attacker with
 feasible computational power can distinguish randomly-keyed AES from
 a randomly-chosen permutation with probability delta (more precisely,
 delta is a function of the computational resources of the attacker
 and of its ability to sample the function), then we obtain that no
 such attacker can forge UMAC with probability greater than 1/2^30,
 1/^60, 1/2^90, or 1/2^120, plus 3*delta. Over N forgery attempts,
 forgery occurs with probability no more than N/2^30, N/^60, N/2^90,
 or N/2^120, plus 3*delta. The value delta may exceed 1/2^30, 1/2^60,
 1/2^90, or 1/2^120, in which case the probability of UMAC forging is
 dominated by a term representing the security of AES.

 With UMAC, off-line computation aimed at exceeding the forging
 probability is hopeless as long as the underlying cipher is not
 broken. An attacker attempting to forge UMAC tags will need to
 interact with the entity that verifies message tags and try a large
 number of forgeries before one is likely to succeed. The system
 architecture will determine the extent to which this is possible. In
 a well-architected system, there should not be any high-bandwidth
 capability for presenting forged MACs and determining if they are
 valid. In particular, the number of authentication failures at the
 verifying party should be limited. If a large number of such
 attempts are detected, the session key in use should be dropped and
 the event be recorded in an audit log.

Krovetz Informational [Page 18]

RFC 4418 UMAC March 2006

 Let us reemphasize: a forging probability of 1/2^60 does not mean
 that there is an attack that runs in 2^60 time; to the contrary, as
 long as the block cipher in use is not broken there is no such attack
 for UMAC. Instead, a 1/2^60 forging probability means that if an
 attacker could have N forgery attempts, then the attacker would have
 no more than N/2^60 probability of getting one or more of them right.

 It should be pointed out that once an attempted forgery is
 successful, it is possible, in principle, that subsequent messages
 under this key may be easily forged. This is important to understand
 in gauging the severity of a successful forgery, even though no such
 attack on UMAC is known to date.

 In conclusion, 64-bit tags seem appropriate for many security
 architectures and commercial applications. If one wants a more
 conservative option, at a cost of about 50% or 100% more computation,
 UMAC can produce 96- or 128-bit tags that have basic collision
 probabilities of at most 1/2^90 and 1/2^120. If one needs less
 security, with the benefit of about 50% less computation, UMAC can
 produce 32-bit tags. In this case, under the same assumptions as
 before, one cannot forge a message with probability better than
 1/2^30. Special care must be taken when using 32-bit tags because
 1/2^30 forgery probability is considered fairly high. Still, high-
 speed low-security authentication can be applied usefully on low-
 value data or rapidly-changing key environments.

6.3. Nonce Considerations

 UMAC requires a nonce with length in the range 1 to BLOCKLEN bytes.
 All nonces in an authentication session must be equal in length. For
 secure operation, no nonce value should be repeated within the life
 of a single UMAC session key. There is no guarantee of message
 authenticity when a nonce is repeated, and so messages accompanied by
 a repeated nonce should be considered inauthentic.

 To authenticate messages over a duplex channel (where two parties
 send messages to each other), a different key could be used for each
 direction. If the same key is used in both directions, then it is
 crucial that all nonces be distinct. For example, one party can use
 even nonces while the other party uses odd ones. The receiving party
 must verify that the sender is using a nonce of the correct form.

 This specification does not indicate how nonce values are created,
 updated, or communicated between the entity producing a tag and the
 entity verifying a tag. The following are possibilities:

Krovetz Informational [Page 19]

RFC 4418 UMAC March 2006

 1. The nonce is an 8-byte unsigned number, Counter, which is
 initialized to zero, which is incremented by one following the
 generation of each authentication tag, and which is always
 communicated along with the message and the authentication tag.
 An error occurs at the sender if there is an attempt to
 authenticate more than 2^64 messages within a session.

 2. The nonce is a BLOCKLEN-byte unsigned number, Counter, which is
 initialized to zero and which is incremented by one following the
 generation of each authentication tag. The Counter is not
 explicitly communicated between the sender and receiver.
 Instead, the two are assumed to communicate over a reliable
 transport, and each maintains its own counter so as to keep track
 of what the current nonce value is.

 3. The nonce is a BLOCKLEN-byte random value. (Because repetitions
 in a random n-bit value are expected at around 2^(n/2) trials,
 the number of messages to be communicated in a session using
 n-bit nonces should not be allowed to approach 2^(n/2).)

 We emphasize that the value of the nonce need not be kept secret.

 When UMAC is used within a higher-level protocol, there may already
 be a field, such as a sequence number, which can be co-opted so as to
 specify the nonce needed by UMAC [5]. The application will then
 specify how to construct the nonce from this already-existing field.

6.4. Replay Attacks

 A replay attack entails the attacker repeating a message, nonce, and
 authentication tag. In many applications, replay attacks may be
 quite damaging and must be prevented. In UMAC, this would normally
 be done at the receiver by having the receiver check that no nonce
 value is used twice. On a reliable connection, when the nonce is a
 counter, this is trivial. On an unreliable connection, when the
 nonce is a counter, one would normally cache some window of recent
 nonces. Out-of-order message delivery in excess of what the window
 allows will result in rejecting otherwise valid authentication tags.
 We emphasize that it is up to the receiver when a given (message,
 nonce, tag) triple will be deemed authentic. Certainly, the tag
 should be valid for the message and nonce, as determined by UMAC, but
 the message may still be deemed inauthentic because the nonce is
 detected to be a replay.

Krovetz Informational [Page 20]

RFC 4418 UMAC March 2006

6.5. Tag-Prefix Verification

 UMAC’s definition makes it possible to implement tag-prefix
 verification; for example, a receiver might verify only the 32-bit
 prefix of a 64-bit tag if its computational load is high. Or a
 receiver might reject out-of-hand a 64-bit tag whose 32-bit prefix is
 incorrect. Such practices are potentially dangerous and can lead to
 attacks that reduce the security of the session to the length of the
 verified prefix. A UMAC key (or session) must have an associated and
 immutable tag length and the implementation should not leak
 information that would reveal if a given proper prefix of a tag is
 valid or invalid.

6.6. Side-Channel Attacks

 Side-channel attacks have the goal of subverting the security of a
 cryptographic system by exploiting its implementation
 characteristics. One common side-channel attack is to measure system
 response time and derive information regarding conditions met by the
 data being processed. Such attacks are known as "timing attacks".
 Discussion of timing and other side-channel attacks is outside of
 this document’s scope. However, we warn that there are places in the
 UMAC algorithm where timing information could be unintentionally
 leaked. In particular, the POLY algorithm (Section 5.3.2) tests
 whether a value m is out of a particular range, and the behavior of
 the algorithm differs depending on the result. If timing attacks are
 to be avoided, care should be taken to equalize the computation time
 in both cases. Timing attacks can also occur for more subtle
 reasons, including caching effects.

7. Acknowledgements

 David McGrew and Scott Fluhrer, of Cisco Systems, played a
 significant role in improving UMAC by encouraging us to pay more
 attention to the performance of short messages. Thanks go to Jim
 Schaad and to those who made helpful suggestions to the CFRG mailing
 list for improving this document during RFC consideration. Black,
 Krovetz, and Rogaway have received support for this work under NSF
 awards 0208842, 0240000, and 9624560, and a gift from Cisco Systems.

Krovetz Informational [Page 21]

RFC 4418 UMAC March 2006

Appendix. Test Vectors

 Following are some sample UMAC outputs over a collection of input
 values, using AES with 16-byte keys. Let

 K = "abcdefghijklmnop" // A 16-byte UMAC key
 N = "bcdefghi" // An 8-byte nonce

 The tags generated by UMAC using key K and nonce N are:

 Message 32-bit Tag 64-bit Tag 96-bit Tag
 ------- ---------- ---------- ----------
 <empty> 113145FB 6E155FAD26900BE1 32FEDB100C79AD58F07FF764
 ’a’ * 3 3B91D102 44B5CB542F220104 185E4FE905CBA7BD85E4C2DC
 ’a’ * 2^10 599B350B 26BF2F5D60118BD9 7A54ABE04AF82D60FB298C3C
 ’a’ * 2^15 58DCF532 27F8EF643B0D118D 7B136BD911E4B734286EF2BE
 ’a’ * 2^20 DB6364D1 A4477E87E9F55853 F8ACFA3AC31CFEEA047F7B11
 ’a’ * 2^25 5109A660 2E2DBC36860A0A5F 72C6388BACE3ACE6FBF062D9
 ’abc’ * 1 ABF3A3A0 D4D7B9F6BD4FBFCF 883C3D4B97A61976FFCF2323
 ’abc’ * 500 ABEB3C8B D4CF26DDEFD5C01A 8824A260C53C66A36C9260A6

 The first column lists a small sample of messages that are strings of
 repeated ASCII ’a’ bytes or ’abc’ strings. The remaining columns
 give in hexadecimal the tags generated when UMAC is called with the
 corresponding message, nonce N and key K.

 When using key K and producing a 64-bit tag, the following relevant
 keys are generated:

 Iteration 1 Iteration 2
 ----------- -----------
 NH (Section 5.2.2)

 K_1 ACD79B4F C6DFECA2
 K_2 6EDA0D0E 964A710D
 K_3 1625B603 AD7EDE4D
 K_4 84F9FC93 A1D3935E
 K_5 C6DFECA2 62EC8672
 ...
 K_256 0BF0F56C 744C294F

 L2-HASH (Section 5.3.1)

 k64 0094B8DD0137BEF8 01036F4D000E7E72

 L3-HASH (Section 5.4.1)

 k_5 056533C3A8 0504BF4D4E

Krovetz Informational [Page 22]

RFC 4418 UMAC March 2006

 k_6 07591E062E 0126E922FF
 k_7 0C2D30F89D 030C0399E2
 k_8 046786437C 04C1CB8FED
 K2 2E79F461 A74C03AA

 (Note that k_1 ... k_4 are not listed in this example because they
 are multiplied by zero in L3-HASH.)

 When generating a 64-bit tag on input "’abc’ * 500", the following
 intermediate results are produced:

 Iteration 1

 L1-HASH E6096F94EDC45CAC1BEDCD0E7FDAA906
 L2-HASH 0000000000000000A6C537D7986FA4AA
 L3-HASH 05F86309

 Iteration 2

 L1-HASH 2665EAD321CFAE79C82F3B90261641E5
 L2-HASH 00000000000000001D79EAF247B394BF
 L3-HASH DF9AD858

 Concatenating the two L3-HASH results produces a final UHASH result
 of 05F86309DF9AD858. The pad generated for nonce N is
 D13745D4304F1842, which when xor’ed with the L3-HASH result yields a
 tag of D4CF26DDEFD5C01A.

Krovetz Informational [Page 23]

RFC 4418 UMAC March 2006

References

Normative References

 [1] FIPS-197, "Advanced Encryption Standard (AES)", National
 Institute of Standards and Technology, 2001.

Informative References

 [2] D. Bernstein, "Stronger security bounds for permutations",
 unpublished manuscript, 2005. This work refines "Stronger
 security bounds for Wegman-Carter-Shoup authenticators",
 Advances in Cryptology - EUROCRYPT 2005, LNCS vol. 3494, pp.
 164-180, Springer-Verlag, 2005.

 [3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway,
 "UMAC: Fast and provably secure message authentication",
 Advances in Cryptology - CRYPTO ’99, LNCS vol. 1666, pp. 216-
 233, Springer-Verlag, 1999.

 [4] L. Carter and M. Wegman, "Universal classes of hash functions",
 Journal of Computer and System Sciences, 18 (1979), pp. 143-
 154.

 [5] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303,
 December 2005.

 [6] T. Krovetz, "Software-optimized universal hashing and message
 authentication", UMI Dissertation Services, 2000.

 [7] M. Wegman and L. Carter, "New hash functions and their use in
 authentication and set equality", Journal of Computer and
 System Sciences, 22 (1981), pp. 265-279.

Krovetz Informational [Page 24]

RFC 4418 UMAC March 2006

Authors’ Addresses

 John Black
 Department of Computer Science
 University of Colorado
 Boulder, CO 80309
 USA

 EMail: jrblack@cs.colorado.edu

 Shai Halevi
 IBM T.J. Watson Research Center
 P.O. Box 704
 Yorktown Heights, NY 10598
 USA

 EMail: shaih@alum.mit.edu

 Alejandro Hevia
 Department of Computer Science
 University of Chile
 Santiago 837-0459
 CHILE

 EMail: ahevia@dcc.uchile.cl

 Hugo Krawczyk
 IBM Research
 19 Skyline Dr
 Hawthorne, NY 10533
 USA

 EMail: hugo@ee.technion.ac.il

 Ted Krovetz (Editor)
 Department of Computer Science
 California State University
 Sacramento, CA 95819
 USA

 EMail: tdk@acm.org

Krovetz Informational [Page 25]

RFC 4418 UMAC March 2006

 Phillip Rogaway
 Department of Computer Science
 University of California
 Davis, CA 95616
 USA
 and
 Department of Computer Science
 Faculty of Science
 Chiang Mai University
 Chiang Mai 50200
 THAILAND

 EMail: rogaway@cs.ucdavis.edu

Krovetz Informational [Page 26]

RFC 4418 UMAC March 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Krovetz Informational [Page 27]

