
Network Working Group T. Ylonen
Request for Comments: 4254 SSH Communications Security Corp
Category: Standards Track C. Lonvick, Ed.
 Cisco Systems, Inc.
 January 2006

 The Secure Shell (SSH) Connection Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Secure Shell (SSH) is a protocol for secure remote login and other
 secure network services over an insecure network.

 This document describes the SSH Connection Protocol. It provides
 interactive login sessions, remote execution of commands, forwarded
 TCP/IP connections, and forwarded X11 connections. All of these
 channels are multiplexed into a single encrypted tunnel.

 The SSH Connection Protocol has been designed to run on top of the
 SSH transport layer and user authentication protocols.

Ylonen & Lonvick Standards Track [Page 1]

RFC 4254 SSH Connection Protocol January 2006

Table of Contents

 1. Introduction ..2
 2. Contributors ..3
 3. Conventions Used in This Document3
 4. Global Requests ...4
 5. Channel Mechanism ...5
 5.1. Opening a Channel ..5
 5.2. Data Transfer ..7
 5.3. Closing a Channel ..9
 5.4. Channel-Specific Requests9
 6. Interactive Sessions ...10
 6.1. Opening a Session ...10
 6.2. Requesting a Pseudo-Terminal11
 6.3. X11 Forwarding ..11
 6.3.1. Requesting X11 Forwarding11
 6.3.2. X11 Channels12
 6.4. Environment Variable Passing12
 6.5. Starting a Shell or a Command13
 6.6. Session Data Transfer14
 6.7. Window Dimension Change Message14
 6.8. Local Flow Control ..14
 6.9. Signals ...15
 6.10. Returning Exit Status15
 7. TCP/IP Port Forwarding ...16
 7.1. Requesting Port Forwarding16
 7.2. TCP/IP Forwarding Channels18
 8. Encoding of Terminal Modes19
 9. Summary of Message Numbers21
 10. IANA Considerations ...21
 11. Security Considerations21
 12. References ..22
 12.1. Normative References22
 12.2. Informative References22
 Authors’ Addresses ..23
 Trademark Notice ..23

1. Introduction

 The SSH Connection Protocol has been designed to run on top of the
 SSH transport layer and user authentication protocols ([SSH-TRANS]
 and [SSH-USERAUTH]). It provides interactive login sessions, remote
 execution of commands, forwarded TCP/IP connections, and forwarded
 X11 connections.

 The ’service name’ for this protocol is "ssh-connection".

Ylonen & Lonvick Standards Track [Page 2]

RFC 4254 SSH Connection Protocol January 2006

 This document should be read only after reading the SSH architecture
 document [SSH-ARCH]. This document freely uses terminology and
 notation from the architecture document without reference or further
 explanation.

2. Contributors

 The major original contributors of this set of documents have been:
 Tatu Ylonen, Tero Kivinen, Timo J. Rinne, Sami Lehtinen (all of SSH
 Communications Security Corp), and Markku-Juhani O. Saarinen
 (University of Jyvaskyla). Darren Moffat was the original editor of
 this set of documents and also made very substantial contributions.

 Many people contributed to the development of this document over the
 years. People who should be acknowledged include Mats Andersson, Ben
 Harris, Bill Sommerfeld, Brent McClure, Niels Moller, Damien Miller,
 Derek Fawcus, Frank Cusack, Heikki Nousiainen, Jakob Schlyter, Jeff
 Van Dyke, Jeffrey Altman, Jeffrey Hutzelman, Jon Bright, Joseph
 Galbraith, Ken Hornstein, Markus Friedl, Martin Forssen, Nicolas
 Williams, Niels Provos, Perry Metzger, Peter Gutmann, Simon
 Josefsson, Simon Tatham, Wei Dai, Denis Bider, der Mouse, and
 Tadayoshi Kohno. Listing their names here does not mean that they
 endorse this document, but that they have contributed to it.

3. Conventions Used in This Document

 All documents related to the SSH protocols shall use the keywords
 "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" to describe
 requirements. These keywords are to be interpreted as described in
 [RFC2119].

 The keywords "PRIVATE USE", "HIERARCHICAL ALLOCATION", "FIRST COME
 FIRST SERVED", "EXPERT REVIEW", "SPECIFICATION REQUIRED", "IESG
 APPROVAL", "IETF CONSENSUS", and "STANDARDS ACTION" that appear in
 this document when used to describe namespace allocation are to be
 interpreted as described in [RFC2434].

 Protocol fields and possible values to fill them are defined in this
 set of documents. Protocol fields will be defined in the message
 definitions. As an example, SSH_MSG_CHANNEL_DATA is defined as
 follows.

 byte SSH_MSG_CHANNEL_DATA
 uint32 recipient channel
 string data

Ylonen & Lonvick Standards Track [Page 3]

RFC 4254 SSH Connection Protocol January 2006

 Throughout these documents, when the fields are referenced, they will
 appear within single quotes. When values to fill those fields are
 referenced, they will appear within double quotes. Using the above
 example, possible values for ’data’ are "foo" and "bar".

4. Global Requests

 There are several kinds of requests that affect the state of the
 remote end globally, independent of any channels. An example is a
 request to start TCP/IP forwarding for a specific port. Note that
 both the client and server MAY send global requests at any time, and
 the receiver MUST respond appropriately. All such requests use the
 following format.

 byte SSH_MSG_GLOBAL_REQUEST
 string request name in US-ASCII only
 boolean want reply
 request-specific data follows

 The value of ’request name’ follows the DNS extensibility naming
 convention outlined in [SSH-ARCH].

 The recipient will respond to this message with
 SSH_MSG_REQUEST_SUCCESS or SSH_MSG_REQUEST_FAILURE if ’want reply’ is
 TRUE.

 byte SSH_MSG_REQUEST_SUCCESS
 response specific data

 Usually, the ’response specific data’ is non-existent.

 If the recipient does not recognize or support the request, it simply
 responds with SSH_MSG_REQUEST_FAILURE.

 byte SSH_MSG_REQUEST_FAILURE

 In general, the reply messages do not include request type
 identifiers. To make it possible for the originator of a request to
 identify to which request each reply refers, it is REQUIRED that
 replies to SSH_MSG_GLOBAL_REQUESTS MUST be sent in the same order as
 the corresponding request messages. For channel requests, replies
 that relate to the same channel MUST also be replied to in the right
 order. However, channel requests for distinct channels MAY be
 replied to out-of-order.

Ylonen & Lonvick Standards Track [Page 4]

RFC 4254 SSH Connection Protocol January 2006

5. Channel Mechanism

 All terminal sessions, forwarded connections, etc., are channels.
 Either side may open a channel. Multiple channels are multiplexed
 into a single connection.

 Channels are identified by numbers at each end. The number referring
 to a channel may be different on each side. Requests to open a
 channel contain the sender’s channel number. Any other channel-
 related messages contain the recipient’s channel number for the
 channel.

 Channels are flow-controlled. No data may be sent to a channel until
 a message is received to indicate that window space is available.

5.1. Opening a Channel

 When either side wishes to open a new channel, it allocates a local
 number for the channel. It then sends the following message to the
 other side, and includes the local channel number and initial window
 size in the message.

 byte SSH_MSG_CHANNEL_OPEN
 string channel type in US-ASCII only
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 channel type specific data follows

 The ’channel type’ is a name, as described in [SSH-ARCH] and
 [SSH-NUMBERS], with similar extension mechanisms. The ’sender
 channel’ is a local identifier for the channel used by the sender of
 this message. The ’initial window size’ specifies how many bytes of
 channel data can be sent to the sender of this message without
 adjusting the window. The ’maximum packet size’ specifies the
 maximum size of an individual data packet that can be sent to the
 sender. For example, one might want to use smaller packets for
 interactive connections to get better interactive response on slow
 links.

 The remote side then decides whether it can open the channel, and
 responds with either SSH_MSG_CHANNEL_OPEN_CONFIRMATION or
 SSH_MSG_CHANNEL_OPEN_FAILURE.

Ylonen & Lonvick Standards Track [Page 5]

RFC 4254 SSH Connection Protocol January 2006

 byte SSH_MSG_CHANNEL_OPEN_CONFIRMATION
 uint32 recipient channel
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 channel type specific data follows

 The ’recipient channel’ is the channel number given in the original
 open request, and ’sender channel’ is the channel number allocated by
 the other side.

 byte SSH_MSG_CHANNEL_OPEN_FAILURE
 uint32 recipient channel
 uint32 reason code
 string description in ISO-10646 UTF-8 encoding [RFC3629]
 string language tag [RFC3066]

 If the recipient of the SSH_MSG_CHANNEL_OPEN message does not support
 the specified ’channel type’, it simply responds with
 SSH_MSG_CHANNEL_OPEN_FAILURE. The client MAY show the ’description’
 string to the user. If this is done, the client software should take
 the precautions discussed in [SSH-ARCH].

 The SSH_MSG_CHANNEL_OPEN_FAILURE ’reason code’ values are defined in
 the following table. Note that the values for the ’reason code’ are
 given in decimal format for readability, but they are actually uint32
 values.

 Symbolic name reason code
 ------------- -----------
 SSH_OPEN_ADMINISTRATIVELY_PROHIBITED 1
 SSH_OPEN_CONNECT_FAILED 2
 SSH_OPEN_UNKNOWN_CHANNEL_TYPE 3
 SSH_OPEN_RESOURCE_SHORTAGE 4

 Requests for assignments of new SSH_MSG_CHANNEL_OPEN ’reason code’
 values (and associated ’description’ text) in the range of 0x00000005
 to 0xFDFFFFFF MUST be done through the IETF CONSENSUS method, as
 described in [RFC2434]. The IANA will not assign Channel Connection
 Failure ’reason code’ values in the range of 0xFE000000 to
 0xFFFFFFFF. Channel Connection Failure ’reason code’ values in that
 range are left for PRIVATE USE, as described in [RFC2434].

 While it is understood that the IANA will have no control over the
 range of 0xFE000000 to 0xFFFFFFFF, this range will be split in two
 parts and administered by the following conventions.

Ylonen & Lonvick Standards Track [Page 6]

RFC 4254 SSH Connection Protocol January 2006

 o The range of 0xFE000000 to 0xFEFFFFFF is to be used in conjunction
 with locally assigned channels. For example, if a channel is
 proposed with a ’channel type’ of "example_session@example.com",
 but fails, then the response will contain either a ’reason code’
 assigned by the IANA (as listed above and in the range of
 0x00000001 to 0xFDFFFFFF) or a locally assigned value in the range
 of 0xFE000000 to 0xFEFFFFFF. Naturally, if the server does not
 understand the proposed ’channel type’, even if it is a locally
 defined ’channel type’, then the ’reason code’ MUST be 0x00000003,
 as described above, if the ’reason code’ is sent. If the server
 does understand the ’channel type’, but the channel still fails to
 open, then the server SHOULD respond with a locally assigned
 ’reason code’ value consistent with the proposed, local ’channel
 type’. It is assumed that practitioners will first attempt to use
 the IANA assigned ’reason code’ values and then document their
 locally assigned ’reason code’ values.

 o There are no restrictions or suggestions for the range starting
 with 0xFF. No interoperability is expected for anything used in
 this range. Essentially, it is for experimentation.

5.2. Data Transfer

 The window size specifies how many bytes the other party can send
 before it must wait for the window to be adjusted. Both parties use
 the following message to adjust the window.

 byte SSH_MSG_CHANNEL_WINDOW_ADJUST
 uint32 recipient channel
 uint32 bytes to add

 After receiving this message, the recipient MAY send the given number
 of bytes more than it was previously allowed to send; the window size
 is incremented. Implementations MUST correctly handle window sizes
 of up to 2^32 - 1 bytes. The window MUST NOT be increased above
 2^32 - 1 bytes.

 Data transfer is done with messages of the following type.

 byte SSH_MSG_CHANNEL_DATA
 uint32 recipient channel
 string data

 The maximum amount of data allowed is determined by the maximum
 packet size for the channel, and the current window size, whichever
 is smaller. The window size is decremented by the amount of data
 sent. Both parties MAY ignore all extra data sent after the allowed
 window is empty.

Ylonen & Lonvick Standards Track [Page 7]

RFC 4254 SSH Connection Protocol January 2006

 Implementations are expected to have some limit on the SSH transport
 layer packet size (any limit for received packets MUST be 32768 bytes
 or larger, as described in [SSH-TRANS]). The implementation of the
 SSH connection layer

 o MUST NOT advertise a maximum packet size that would result in
 transport packets larger than its transport layer is willing to
 receive.

 o MUST NOT generate data packets larger than its transport layer is
 willing to send, even if the remote end would be willing to accept
 very large packets.

 Additionally, some channels can transfer several types of data. An
 example of this is stderr data from interactive sessions. Such data
 can be passed with SSH_MSG_CHANNEL_EXTENDED_DATA messages, where a
 separate integer specifies the type of data. The available types and
 their interpretation depend on the type of channel.

 byte SSH_MSG_CHANNEL_EXTENDED_DATA
 uint32 recipient channel
 uint32 data_type_code
 string data

 Data sent with these messages consumes the same window as ordinary
 data.

 Currently, only the following type is defined. Note that the value
 for the ’data_type_code’ is given in decimal format for readability,
 but the values are actually uint32 values.

 Symbolic name data_type_code
 ------------- --------------
 SSH_EXTENDED_DATA_STDERR 1

 Extended Channel Data Transfer ’data_type_code’ values MUST be
 assigned sequentially. Requests for assignments of new Extended
 Channel Data Transfer ’data_type_code’ values and their associated
 Extended Channel Data Transfer ’data’ strings, in the range of
 0x00000002 to 0xFDFFFFFF, MUST be done through the IETF CONSENSUS
 method as described in [RFC2434]. The IANA will not assign Extended
 Channel Data Transfer ’data_type_code’ values in the range of
 0xFE000000 to 0xFFFFFFFF. Extended Channel Data Transfer
 ’data_type_code’ values in that range are left for PRIVATE USE, as
 described in [RFC2434]. As is noted, the actual instructions to the
 IANA are in [SSH-NUMBERS].

Ylonen & Lonvick Standards Track [Page 8]

RFC 4254 SSH Connection Protocol January 2006

5.3. Closing a Channel

 When a party will no longer send more data to a channel, it SHOULD
 send SSH_MSG_CHANNEL_EOF.

 byte SSH_MSG_CHANNEL_EOF
 uint32 recipient channel

 No explicit response is sent to this message. However, the
 application may send EOF to whatever is at the other end of the
 channel. Note that the channel remains open after this message, and
 more data may still be sent in the other direction. This message
 does not consume window space and can be sent even if no window space
 is available.

 When either party wishes to terminate the channel, it sends
 SSH_MSG_CHANNEL_CLOSE. Upon receiving this message, a party MUST
 send back an SSH_MSG_CHANNEL_CLOSE unless it has already sent this
 message for the channel. The channel is considered closed for a
 party when it has both sent and received SSH_MSG_CHANNEL_CLOSE, and
 the party may then reuse the channel number. A party MAY send
 SSH_MSG_CHANNEL_CLOSE without having sent or received
 SSH_MSG_CHANNEL_EOF.

 byte SSH_MSG_CHANNEL_CLOSE
 uint32 recipient channel

 This message does not consume window space and can be sent even if no
 window space is available.

 It is RECOMMENDED that all data sent before this message be delivered
 to the actual destination, if possible.

5.4. Channel-Specific Requests

 Many ’channel type’ values have extensions that are specific to that
 particular ’channel type’. An example is requesting a pty (pseudo
 terminal) for an interactive session.

 All channel-specific requests use the following format.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string request type in US-ASCII characters only
 boolean want reply
 type-specific data follows

Ylonen & Lonvick Standards Track [Page 9]

RFC 4254 SSH Connection Protocol January 2006

 If ’want reply’ is FALSE, no response will be sent to the request.
 Otherwise, the recipient responds with either
 SSH_MSG_CHANNEL_SUCCESS, SSH_MSG_CHANNEL_FAILURE, or request-specific
 continuation messages. If the request is not recognized or is not
 supported for the channel, SSH_MSG_CHANNEL_FAILURE is returned.

 This message does not consume window space and can be sent even if no
 window space is available. The values of ’request type’ are local to
 each channel type.

 The client is allowed to send further messages without waiting for
 the response to the request.

 ’request type’ names follow the DNS extensibility naming convention
 outlined in [SSH-ARCH] and [SSH-NUMBERS].

 byte SSH_MSG_CHANNEL_SUCCESS
 uint32 recipient channel

 byte SSH_MSG_CHANNEL_FAILURE
 uint32 recipient channel

 These messages do not consume window space and can be sent even if no
 window space is available.

6. Interactive Sessions

 A session is a remote execution of a program. The program may be a
 shell, an application, a system command, or some built-in subsystem.
 It may or may not have a tty, and may or may not involve X11
 forwarding. Multiple sessions can be active simultaneously.

6.1. Opening a Session

 A session is started by sending the following message.

 byte SSH_MSG_CHANNEL_OPEN
 string "session"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size

 Client implementations SHOULD reject any session channel open
 requests to make it more difficult for a corrupt server to attack the
 client.

Ylonen & Lonvick Standards Track [Page 10]

RFC 4254 SSH Connection Protocol January 2006

6.2. Requesting a Pseudo-Terminal

 A pseudo-terminal can be allocated for the session by sending the
 following message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "pty-req"
 boolean want_reply
 string TERM environment variable value (e.g., vt100)
 uint32 terminal width, characters (e.g., 80)
 uint32 terminal height, rows (e.g., 24)
 uint32 terminal width, pixels (e.g., 640)
 uint32 terminal height, pixels (e.g., 480)
 string encoded terminal modes

 The ’encoded terminal modes’ are described in Section 8. Zero
 dimension parameters MUST be ignored. The character/row dimensions
 override the pixel dimensions (when nonzero). Pixel dimensions refer
 to the drawable area of the window.

 The dimension parameters are only informational.

 The client SHOULD ignore pty requests.

6.3. X11 Forwarding

6.3.1. Requesting X11 Forwarding

 X11 forwarding may be requested for a session by sending a
 SSH_MSG_CHANNEL_REQUEST message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "x11-req"
 boolean want reply
 boolean single connection
 string x11 authentication protocol
 string x11 authentication cookie
 uint32 x11 screen number

 It is RECOMMENDED that the ’x11 authentication cookie’ that is sent
 be a fake, random cookie, and that the cookie be checked and replaced
 by the real cookie when a connection request is received.

 X11 connection forwarding should stop when the session channel is
 closed. However, already opened forwardings should not be
 automatically closed when the session channel is closed.

Ylonen & Lonvick Standards Track [Page 11]

RFC 4254 SSH Connection Protocol January 2006

 If ’single connection’ is TRUE, only a single connection should be
 forwarded. No more connections will be forwarded after the first, or
 after the session channel has been closed.

 The ’x11 authentication protocol’ is the name of the X11
 authentication method used, e.g., "MIT-MAGIC-COOKIE-1".

 The ’x11 authentication cookie’ MUST be hexadecimal encoded.

 The X Protocol is documented in [SCHEIFLER].

6.3.2. X11 Channels

 X11 channels are opened with a channel open request. The resulting
 channels are independent of the session, and closing the session
 channel does not close the forwarded X11 channels.

 byte SSH_MSG_CHANNEL_OPEN
 string "x11"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 string originator address (e.g., "192.168.7.38")
 uint32 originator port

 The recipient should respond with SSH_MSG_CHANNEL_OPEN_CONFIRMATION
 or SSH_MSG_CHANNEL_OPEN_FAILURE.

 Implementations MUST reject any X11 channel open requests if they
 have not requested X11 forwarding.

6.4. Environment Variable Passing

 Environment variables may be passed to the shell/command to be
 started later. Uncontrolled setting of environment variables in a
 privileged process can be a security hazard. It is recommended that
 implementations either maintain a list of allowable variable names or
 only set environment variables after the server process has dropped
 sufficient privileges.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "env"
 boolean want reply
 string variable name
 string variable value

Ylonen & Lonvick Standards Track [Page 12]

RFC 4254 SSH Connection Protocol January 2006

6.5. Starting a Shell or a Command

 Once the session has been set up, a program is started at the remote
 end. The program can be a shell, an application program, or a
 subsystem with a host-independent name. Only one of these requests
 can succeed per channel.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "shell"
 boolean want reply

 This message will request that the user’s default shell (typically
 defined in /etc/passwd in UNIX systems) be started at the other end.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "exec"
 boolean want reply
 string command

 This message will request that the server start the execution of the
 given command. The ’command’ string may contain a path. Normal
 precautions MUST be taken to prevent the execution of unauthorized
 commands.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "subsystem"
 boolean want reply
 string subsystem name

 This last form executes a predefined subsystem. It is expected that
 these will include a general file transfer mechanism, and possibly
 other features. Implementations may also allow configuring more such
 mechanisms. As the user’s shell is usually used to execute the
 subsystem, it is advisable for the subsystem protocol to have a
 "magic cookie" at the beginning of the protocol transaction to
 distinguish it from arbitrary output generated by shell
 initialization scripts, etc. This spurious output from the shell may
 be filtered out either at the server or at the client.

 The server SHOULD NOT halt the execution of the protocol stack when
 starting a shell or a program. All input and output from these
 SHOULD be redirected to the channel or to the encrypted tunnel.

 It is RECOMMENDED that the reply to these messages be requested and
 checked. The client SHOULD ignore these messages.

Ylonen & Lonvick Standards Track [Page 13]

RFC 4254 SSH Connection Protocol January 2006

 Subsystem names follow the DNS extensibility naming convention
 outlined in [SSH-NUMBERS].

6.6. Session Data Transfer

 Data transfer for a session is done using SSH_MSG_CHANNEL_DATA and
 SSH_MSG_CHANNEL_EXTENDED_DATA packets and the window mechanism. The
 extended data type SSH_EXTENDED_DATA_STDERR has been defined for
 stderr data.

6.7. Window Dimension Change Message

 When the window (terminal) size changes on the client side, it MAY
 send a message to the other side to inform it of the new dimensions.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "window-change"
 boolean FALSE
 uint32 terminal width, columns
 uint32 terminal height, rows
 uint32 terminal width, pixels
 uint32 terminal height, pixels

 A response SHOULD NOT be sent to this message.

6.8. Local Flow Control

 On many systems, it is possible to determine if a pseudo-terminal is
 using control-S/control-Q flow control. When flow control is
 allowed, it is often desirable to do the flow control at the client
 end to speed up responses to user requests. This is facilitated by
 the following notification. Initially, the server is responsible for
 flow control. (Here, again, client means the side originating the
 session, and server means the other side.)

 The message below is used by the server to inform the client when it
 can or cannot perform flow control (control-S/control-Q processing).
 If ’client can do’ is TRUE, the client is allowed to do flow control
 using control-S and control-Q. The client MAY ignore this message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "xon-xoff"
 boolean FALSE
 boolean client can do

 No response is sent to this message.

Ylonen & Lonvick Standards Track [Page 14]

RFC 4254 SSH Connection Protocol January 2006

6.9. Signals

 A signal can be delivered to the remote process/service using the
 following message. Some systems may not implement signals, in which
 case they SHOULD ignore this message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "signal"
 boolean FALSE
 string signal name (without the "SIG" prefix)

 ’signal name’ values will be encoded as discussed in the passage
 describing SSH_MSG_CHANNEL_REQUEST messages using "exit-signal" in
 this section.

6.10. Returning Exit Status

 When the command running at the other end terminates, the following
 message can be sent to return the exit status of the command.
 Returning the status is RECOMMENDED. No acknowledgement is sent for
 this message. The channel needs to be closed with
 SSH_MSG_CHANNEL_CLOSE after this message.

 The client MAY ignore these messages.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "exit-status"
 boolean FALSE
 uint32 exit_status

 The remote command may also terminate violently due to a signal.
 Such a condition can be indicated by the following message. A zero
 ’exit_status’ usually means that the command terminated successfully.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "exit-signal"
 boolean FALSE
 string signal name (without the "SIG" prefix)
 boolean core dumped
 string error message in ISO-10646 UTF-8 encoding
 string language tag [RFC3066]

Ylonen & Lonvick Standards Track [Page 15]

RFC 4254 SSH Connection Protocol January 2006

 The ’signal name’ is one of the following (these are from [POSIX]).

 ABRT
 ALRM
 FPE
 HUP
 ILL
 INT
 KILL
 PIPE
 QUIT
 SEGV
 TERM
 USR1
 USR2

 Additional ’signal name’ values MAY be sent in the format
 "sig-name@xyz", where "sig-name" and "xyz" may be anything a
 particular implementer wants (except the "@" sign). However, it is
 suggested that if a ’configure’ script is used, any non-standard
 ’signal name’ values it finds be encoded as "SIG@xyz.config.guess",
 where "SIG" is the ’signal name’ without the "SIG" prefix, and "xyz"
 is the host type, as determined by "config.guess".

 The ’error message’ contains an additional textual explanation of the
 error message. The message may consist of multiple lines separated
 by CRLF (Carriage Return - Line Feed) pairs. The client software MAY
 display this message to the user. If this is done, the client
 software should take the precautions discussed in [SSH-ARCH].

7. TCP/IP Port Forwarding

7.1. Requesting Port Forwarding

 A party need not explicitly request forwardings from its own end to
 the other direction. However, if it wishes that connections to a
 port on the other side be forwarded to the local side, it must
 explicitly request this.

 byte SSH_MSG_GLOBAL_REQUEST
 string "tcpip-forward"
 boolean want reply
 string address to bind (e.g., "0.0.0.0")
 uint32 port number to bind

Ylonen & Lonvick Standards Track [Page 16]

RFC 4254 SSH Connection Protocol January 2006

 The ’address to bind’ and ’port number to bind’ specify the IP
 address (or domain name) and port on which connections for forwarding
 are to be accepted. Some strings used for ’address to bind’ have
 special-case semantics.

 o "" means that connections are to be accepted on all protocol
 families supported by the SSH implementation.

 o "0.0.0.0" means to listen on all IPv4 addresses.

 o "::" means to listen on all IPv6 addresses.

 o "localhost" means to listen on all protocol families supported by
 the SSH implementation on loopback addresses only ([RFC3330] and
 [RFC3513]).

 o "127.0.0.1" and "::1" indicate listening on the loopback
 interfaces for IPv4 and IPv6, respectively.

 Note that the client can still filter connections based on
 information passed in the open request.

 Implementations should only allow forwarding privileged ports if the
 user has been authenticated as a privileged user.

 Client implementations SHOULD reject these messages; they are
 normally only sent by the client.

 If a client passes 0 as port number to bind and has ’want reply’ as
 TRUE, then the server allocates the next available unprivileged port
 number and replies with the following message; otherwise, there is no
 response-specific data.

 byte SSH_MSG_REQUEST_SUCCESS
 uint32 port that was bound on the server

 A port forwarding can be canceled with the following message. Note
 that channel open requests may be received until a reply to this
 message is received.

 byte SSH_MSG_GLOBAL_REQUEST
 string "cancel-tcpip-forward"
 boolean want reply
 string address_to_bind (e.g., "127.0.0.1")
 uint32 port number to bind

 Client implementations SHOULD reject these messages; they are
 normally only sent by the client.

Ylonen & Lonvick Standards Track [Page 17]

RFC 4254 SSH Connection Protocol January 2006

7.2. TCP/IP Forwarding Channels

 When a connection comes to a port for which remote forwarding has
 been requested, a channel is opened to forward the port to the other
 side.

 byte SSH_MSG_CHANNEL_OPEN
 string "forwarded-tcpip"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 string address that was connected
 uint32 port that was connected
 string originator IP address
 uint32 originator port

 Implementations MUST reject these messages unless they have
 previously requested a remote TCP/IP port forwarding with the given
 port number.

 When a connection comes to a locally forwarded TCP/IP port, the
 following packet is sent to the other side. Note that these messages
 MAY also be sent for ports for which no forwarding has been
 explicitly requested. The receiving side must decide whether to
 allow the forwarding.

 byte SSH_MSG_CHANNEL_OPEN
 string "direct-tcpip"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 string host to connect
 uint32 port to connect
 string originator IP address
 uint32 originator port

 The ’host to connect’ and ’port to connect’ specify the TCP/IP host
 and port where the recipient should connect the channel. The ’host
 to connect’ may be either a domain name or a numeric IP address.

 The ’originator IP address’ is the numeric IP address of the machine
 from where the connection request originates, and the ’originator
 port’ is the port on the host from where the connection originated.

 Forwarded TCP/IP channels are independent of any sessions, and
 closing a session channel does not in any way imply that forwarded
 connections should be closed.

Ylonen & Lonvick Standards Track [Page 18]

RFC 4254 SSH Connection Protocol January 2006

 Client implementations SHOULD reject direct TCP/IP open requests for
 security reasons.

8. Encoding of Terminal Modes

 All ’encoded terminal modes’ (as passed in a pty request) are encoded
 into a byte stream. It is intended that the coding be portable
 across different environments. The stream consists of opcode-
 argument pairs wherein the opcode is a byte value. Opcodes 1 to 159
 have a single uint32 argument. Opcodes 160 to 255 are not yet
 defined, and cause parsing to stop (they should only be used after
 any other data). The stream is terminated by opcode TTY_OP_END
 (0x00).

 The client SHOULD put any modes it knows about in the stream, and the
 server MAY ignore any modes it does not know about. This allows some
 degree of machine-independence, at least between systems that use a
 POSIX-like tty interface. The protocol can support other systems as
 well, but the client may need to fill reasonable values for a number
 of parameters so the server pty gets set to a reasonable mode (the
 server leaves all unspecified mode bits in their default values, and
 only some combinations make sense).

 The naming of opcode values mostly follows the POSIX terminal mode
 flags. The following opcode values have been defined. Note that the
 values given below are in decimal format for readability, but they
 are actually byte values.

 opcode mnemonic description
 ------ -------- -----------
 0 TTY_OP_END Indicates end of options.
 1 VINTR Interrupt character; 255 if none. Similarly
 for the other characters. Not all of these
 characters are supported on all systems.
 2 VQUIT The quit character (sends SIGQUIT signal on
 POSIX systems).
 3 VERASE Erase the character to left of the cursor.
 4 VKILL Kill the current input line.
 5 VEOF End-of-file character (sends EOF from the
 terminal).
 6 VEOL End-of-line character in addition to
 carriage return and/or linefeed.
 7 VEOL2 Additional end-of-line character.
 8 VSTART Continues paused output (normally
 control-Q).
 9 VSTOP Pauses output (normally control-S).
 10 VSUSP Suspends the current program.
 11 VDSUSP Another suspend character.

Ylonen & Lonvick Standards Track [Page 19]

RFC 4254 SSH Connection Protocol January 2006

 12 VREPRINT Reprints the current input line.
 13 VWERASE Erases a word left of cursor.
 14 VLNEXT Enter the next character typed literally,
 even if it is a special character
 15 VFLUSH Character to flush output.
 16 VSWTCH Switch to a different shell layer.
 17 VSTATUS Prints system status line (load, command,
 pid, etc).
 18 VDISCARD Toggles the flushing of terminal output.
 30 IGNPAR The ignore parity flag. The parameter
 SHOULD be 0 if this flag is FALSE,
 and 1 if it is TRUE.
 31 PARMRK Mark parity and framing errors.
 32 INPCK Enable checking of parity errors.
 33 ISTRIP Strip 8th bit off characters.
 34 INLCR Map NL into CR on input.
 35 IGNCR Ignore CR on input.
 36 ICRNL Map CR to NL on input.
 37 IUCLC Translate uppercase characters to
 lowercase.
 38 IXON Enable output flow control.
 39 IXANY Any char will restart after stop.
 40 IXOFF Enable input flow control.
 41 IMAXBEL Ring bell on input queue full.
 50 ISIG Enable signals INTR, QUIT, [D]SUSP.
 51 ICANON Canonicalize input lines.
 52 XCASE Enable input and output of uppercase
 characters by preceding their lowercase
 equivalents with "\".
 53 ECHO Enable echoing.
 54 ECHOE Visually erase chars.
 55 ECHOK Kill character discards current line.
 56 ECHONL Echo NL even if ECHO is off.
 57 NOFLSH Don’t flush after interrupt.
 58 TOSTOP Stop background jobs from output.
 59 IEXTEN Enable extensions.
 60 ECHOCTL Echo control characters as ^(Char).
 61 ECHOKE Visual erase for line kill.
 62 PENDIN Retype pending input.
 70 OPOST Enable output processing.
 71 OLCUC Convert lowercase to uppercase.
 72 ONLCR Map NL to CR-NL.
 73 OCRNL Translate carriage return to newline
 (output).
 74 ONOCR Translate newline to carriage
 return-newline (output).
 75 ONLRET Newline performs a carriage return
 (output).

Ylonen & Lonvick Standards Track [Page 20]

RFC 4254 SSH Connection Protocol January 2006

 90 CS7 7 bit mode.
 91 CS8 8 bit mode.
 92 PARENB Parity enable.
 93 PARODD Odd parity, else even.

 128 TTY_OP_ISPEED Specifies the input baud rate in
 bits per second.
 129 TTY_OP_OSPEED Specifies the output baud rate in
 bits per second.

9. Summary of Message Numbers

 The following is a summary of messages and their associated message
 number.

 SSH_MSG_GLOBAL_REQUEST 80
 SSH_MSG_REQUEST_SUCCESS 81
 SSH_MSG_REQUEST_FAILURE 82
 SSH_MSG_CHANNEL_OPEN 90
 SSH_MSG_CHANNEL_OPEN_CONFIRMATION 91
 SSH_MSG_CHANNEL_OPEN_FAILURE 92
 SSH_MSG_CHANNEL_WINDOW_ADJUST 93
 SSH_MSG_CHANNEL_DATA 94
 SSH_MSG_CHANNEL_EXTENDED_DATA 95
 SSH_MSG_CHANNEL_EOF 96
 SSH_MSG_CHANNEL_CLOSE 97
 SSH_MSG_CHANNEL_REQUEST 98
 SSH_MSG_CHANNEL_SUCCESS 99
 SSH_MSG_CHANNEL_FAILURE 100

10. IANA Considerations

 This document is part of a set. The IANA considerations for the SSH
 protocol as defined in [SSH-ARCH], [SSH-TRANS], [SSH-USERAUTH], and
 this document, are detailed in [SSH-NUMBERS].

11. Security Considerations

 This protocol is assumed to run on top of a secure, authenticated
 transport. User authentication and protection against network-level
 attacks are assumed to be provided by the underlying protocols.

 Full security considerations for this protocol are provided in
 [SSH-ARCH]. Specific to this document, it is RECOMMENDED that
 implementations disable all the potentially dangerous features (e.g.,
 agent forwarding, X11 forwarding, and TCP/IP forwarding) if the host
 key has changed without notice or explanation.

Ylonen & Lonvick Standards Track [Page 21]

RFC 4254 SSH Connection Protocol January 2006

12. References

12.1. Normative References

 [SSH-ARCH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Protocol Architecture", RFC 4251, January 2006.

 [SSH-TRANS] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Transport Layer Protocol", RFC 4253, January
 2006.

 [SSH-USERAUTH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Authentication Protocol", RFC 4252, January
 2006.

 [SSH-NUMBERS] Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Protocol Assigned Numbers", RFC 4250, January
 2006.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26, RFC
 2434, October 1998.

 [RFC3066] Alvestrand, H., "Tags for the Identification of
 Languages", BCP 47, RFC 3066, January 2001.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

12.2. Informative References

 [RFC3330] IANA, "Special-Use IPv4 Addresses", RFC 3330,
 September 2002.

 [RFC3513] Hinden, R. and S. Deering, "Internet Protocol Version
 6 (IPv6) Addressing Architecture", RFC 3513, April
 2003.

 [SCHEIFLER] Scheifler, R., "X Window System : The Complete
 Reference to Xlib, X Protocol, Icccm, Xlfd, 3rd
 edition.", Digital Press ISBN 1555580882, February
 1992.

Ylonen & Lonvick Standards Track [Page 22]

RFC 4254 SSH Connection Protocol January 2006

 [POSIX] ISO/IEC, 9945-1., "Information technology -- Portable
 Operating System Interface (POSIX)-Part 1: System
 Application Program Interface (API) C Language", ANSI/
 IEE Std 1003.1, July 1996.

Authors’ Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Valimotie 17
 00380 Helsinki
 Finland

 EMail: ylo@ssh.com

 Chris Lonvick (editor)
 Cisco Systems, Inc.
 12515 Research Blvd.
 Austin 78759
 USA

 EMail: clonvick@cisco.com

Trademark Notice

 "ssh" is a registered trademark in the United States and/or other
 countries.

Ylonen & Lonvick Standards Track [Page 23]

RFC 4254 SSH Connection Protocol January 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Ylonen & Lonvick Standards Track [Page 24]

