
Network Working Group S. Sun
Request for Comments: 3652 S. Reilly
Category: Informational L. Lannom
 J. Petrone
 CNRI
 November 2003

 Handle System Protocol (ver 2.1) Specification

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

IESG Note

 Several groups within the IETF and IRTF have discussed the Handle
 System and its relationship to existing systems of identifiers. The
 IESG wishes to point out that these discussions have not resulted in
 IETF consensus on the described Handle System, nor on how it might
 fit into the IETF architecture for identifiers. Though there has
 been discussion of handles as a form of URI, specifically as a URN,
 these documents describe an alternate view of how namespaces and
 identifiers might work on the Internet and include characterizations
 of existing systems which may not match the IETF consensus view.

Abstract

 The Handle System is a general-purpose global name service that
 allows secured name resolution and administration over the public
 Internet. This document describes the protocol used for client
 software to access the Handle System for both handle resolution and
 administration. The protocol specifies the procedure for a client
 software to locate the responsible handle server of any given handle.
 It also defines the messages exchanged between the client and server
 for any handle operation.

Sun, et al. Informational [Page 1]

RFC 3652 Handle System Protocol (v2.1) November 2003

Table of Contents

 1. Overview . 3
 2. Protocol Elements. 4
 2.1. Conventions. 4
 2.1.1. Data Transmission Order. 4
 2.1.2. Transport Layer. 5
 2.1.3. Character Case 6
 2.1.4. Standard String Type: UTF8-String. 7
 2.2. Common Elements. 7
 2.2.1. Message Envelope 8
 2.2.2. Message Header 11
 2.2.3. Message Body 17
 2.2.4. Message Credential 18
 2.3. Message Transmission 20
 3. Handle Protocol Operations 21
 3.1. Client Bootstrapping 21
 3.1.1. Global Handle Registry and its Service
 Information. 21
 3.1.2. Locating the Handle System Service Component . . 22
 3.1.3. Selecting the Responsible Server 23
 3.2. Query Operation. 23
 3.2.1. Query Request. 24
 3.2.2. Successful Query Response. 25
 3.2.3. Unsuccessful Query Response. 26
 3.3. Error Response from Server 26
 3.4. Service Referral . 27
 3.5. Client Authentication. 28
 3.5.1. Challenge from Server to Client. 29
 3.5.2. Challenge-Response from Client to Server 30
 3.5.3. Challenge-Response Verification-Request. 33
 3.5.4. Challenge-Response Verification-Response 33
 3.6. Handle Administration. 34
 3.6.1. Add Handle Value(s). 34
 3.6.2. Remove Handle Value(s) 35
 3.6.3. Modify Handle Value(s) 36
 3.6.4. Create Handle. 37
 3.6.5. Delete Handle. 39
 3.7. Naming Authority (NA) Administration 40
 3.7.1. List Handle(s) under a Naming Authority. 40
 3.7.2. List Sub-Naming Authorities under a Naming
 Authority. 41
 3.8. Session and Session Management 42
 3.8.1. Session Setup Request. 43
 3.8.2. Session Setup Response 46
 3.8.3. Session Key Exchange 47
 3.8.4. Session Termination. 48

Sun, et al. Informational [Page 2]

RFC 3652 Handle System Protocol (v2.1) November 2003

 4. Implementation Guidelines. 48
 4.1. Server Implementation. 48
 4.2. Client Implementation. 49
 5. Security Considerations. 49
 6. Acknowledgements . 50
 7. Informative References . 50
 8. Authors’ Addresses . 52
 9. Full Copyright Statement 53

1. Overview

 The Handle System provides a general-purpose, secured global name
 service for the Internet. It was originally conceived and described
 in a paper by Robert Kahn and Robert Wilensky [18] in 1995. The
 Handle System defines a client server protocol in which client
 software submits requests via a network to handle servers. Each
 request describes the operation to be performed on the server. The
 server will process the request and return a message indicating the
 result of the operation. This document specifies the protocol for
 client software to access a handle server for handle resolution and
 administration. It does not include the description of the protocol
 used to manage handle servers. A discussion of the management
 protocol is out of the scope of this document and will be made
 available in a separate document. The document assumes that readers
 are familiar with the basic concepts of the Handle System as
 introduced in the "Handle System Overview" [1], as well as the data
 model and service definition given in the "Handle System Namespace
 and Service Definition" [2].

 The Handle System consists of a set of service components as defined
 in [2]. From the client’s point of view, the Handle System is a
 distributed database for handles. Different handles under the Handle
 System may be maintained by different handle servers at different
 network locations. The Handle protocol specifies the procedure for a
 client to locate the responsible handle server of any given handle.
 It also defines the messages exchanged between the client and server
 for any handle operation.

 Some key aspects of the Handle protocol include:

 o The Handle protocol supports both handle resolution and
 administration. The protocol follows the data and service
 model defined in [2].

 o A client may authenticate any server response based on the
 server’s digital signature.

Sun, et al. Informational [Page 3]

RFC 3652 Handle System Protocol (v2.1) November 2003

 o A server may authenticate its client as handle administrator
 via the Handle authentication protocol. The Handle
 authentication protocol is a challenge-response protocol that
 supports both public-key and secret-key based authentication.

 o A session may be established between the client and server so
 that authentication information and network resources (e.g.,
 TCP connection) may be shared among multiple operations. A
 session key can be established to achieve data integrity and
 confidentiality.

 o The protocol can be extended to support new operations.
 Controls can be used to extend the existing operations. The
 protocol is defined to allow future backward compatibility.

 o Distributed service architecture. Support service referral
 among different service components.

 o Handles and their data types are based on the ISO-10646
 (Unicode 2.0) character set. UTF-8 [3] is the mandated
 encoding under the Handle protocol.

 The Handle protocol (version 2.1) specified in this document has
 changed significantly from its earlier versions. These changes are
 necessary due to changes made in the Handle System data model and the
 service model. Servers that implement this protocol may continue to
 support earlier versions of the protocol by checking the protocol
 version specified in the Message Envelope (see section 2.2.1).

2. Protocol Elements

2.1. Conventions

 The following conventions are followed by the Handle protocol to
 ensure interoperability among different implementations.

2.1.1. Data Transmission Order

 The order of transmission of data packets follows the network byte
 order (also called the Big-Endian [11]). That is, when a data-gram
 consists of a group of octets, the order of transmission of those
 octets follows their natural order from left to right and from top to
 bottom, as they are read in English. For example, in the following
 diagram, the octets are transmitted in the order they are numbered.

Sun, et al. Informational [Page 4]

RFC 3652 Handle System Protocol (v2.1) November 2003

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 .-------------------------------.
 | 1 | 2 |
 |-------------------------------|
 | 3 | 4 |
 |-------------------------------|
 | 5 | 6 |
 ’-------------------------------’

 If an octet represents a numeric quantity, the left most bit is the
 most significant bit. For example, the following diagram represents
 the value 170 (decimal).

 0 1 2 3 4 5 6 7
 .---------------.
 |1 0 1 0 1 0 1 0|
 ’---------------’

 Similarly, whenever a multi-octet field represents a numeric
 quantity, the left most bit is the most significant bit and the most
 significant octet of the whole field is transmitted first.

2.1.2. Transport Layer

 The Handle protocol is designed so that messages may be transmitted
 either as separate data-grams over UDP or as a continuous byte stream
 via a TCP connection. The recommended port number for both UDP and
 TCP is 2641.

 UDP Usage

 Messages carried by UDP are restricted to 512 bytes (not including
 the IP or UDP header). Longer messages must be fragmented into
 UDP packets where each packet carries a proper sequence number in
 the Message Envelope (see Section 2.2.1).

 The optimum retransmission policy will vary depending on the
 network or server performance, but the following are recommended:

 o The client should try other servers or service interfaces
 before repeating a request to the same server address.

 o The retransmission interval should be based on prior
 statistics if possible. Overly aggressive retransmission
 should be avoided to prevent network congestion. The
 recommended retransmission interval is 2-5 seconds.

Sun, et al. Informational [Page 5]

RFC 3652 Handle System Protocol (v2.1) November 2003

 o When transmitting large amounts of data, TCP-friendly
 congestion control, such as an interface to the Congestion
 Manager [12], should be implemented whenever possible to
 avoid unfair consumption of the bandwidth against TCP-based
 applications. Details of the congestion control will be
 discussed in a separate document.

 TCP Usage

 Messages under the Handle protocol can be mapped directly into a
 TCP byte-stream. However, the size of each message is limited by
 the range of a 4-byte unsigned integer. Longer messages may be
 fragmented into multiple messages before the transmission and
 reassembled at the receiving end.

 Several connection management policies are recommended:

 o The server should support multiple connections and should
 not block other activities waiting for TCP data.

 o By default, the server should close the connection after
 completing the request. However, if the request asks to
 keep the connection open, the server should assume that the
 client will initiate connection closing.

2.1.3. Character Case

 Handles are character strings based on the ISO-10646 character set
 and must be encoded in UTF-8. By default, handle characters are
 treated as case-sensitive under the Handle protocol. A handle
 service, however, may be implemented in such a way that ASCII
 characters are processed case-insensitively. For example, the Global
 Handle Registry (GHR) provides a handle service where ASCII
 characters are processed in a case-insensitive manner. This suggests
 that ASCII characters in any naming authority are case-insensitive.

 When handles are created under a case-insensitive handle server,
 their original case should be preserved. To avoid any confusion, the
 server should avoid creating any handle whose character string
 matches that of an existing handle, ignoring the case difference.
 For example, if the handle "X/Y" was already created, the server
 should refuse any request to create the handle "x/y" or any of its
 case variations.

Sun, et al. Informational [Page 6]

RFC 3652 Handle System Protocol (v2.1) November 2003

2.1.4. Standard String Type: UTF8-String

 Handles are transmitted as UTF8-Strings under the Handle protocol.
 Throughout this document, UTF8-String stands for the data type that
 consists of a 4-byte unsigned integer followed by a character string
 in UTF-8 encoding. The leading integer specifies the number of
 octets of the character string.

2.2. Common Elements

 Each message exchanged under the system protocol consists of four
 sections (see Fig. 2.2). Some of these sections (e.g., the Message
 Body) may be empty depending on the protocol operation.

 The Message Envelope must always be present. It has a fixed size of
 20 octets. The Message Envelope does not carry any application layer
 information and is primarily used to help deliver the message.
 Content in the Message Envelope is not protected by the digital
 signature in the Message Credential.

 The Message Header must always be present as well. It has a fixed
 size of 24 octets and holds the common data fields of all messages
 exchanged between client and server. These include the operation
 code, the response code, and the control options for each protocol
 operation. Content in the Message Header is protected by the digital
 signature in the Message Credential.

 The Message Body contains data specific to each protocol operation.
 Its format varies according to the operation code and the response
 code in the Message Header. The Message Body may be empty. Content
 in the Message Body is protected by the digital signature in the
 Message Credential.

 The Message Credential provides a mechanism for transport security
 for any message exchanged between the client and server. A non-empty
 Message Credential may contain the digital signature from the
 originator of the message or the one-way Message Authentication Code
 (MAC) based on a pre-established session key. The Message Credential
 may be used to authenticate the message between the client and
 server. It can also be used to check data integrity after its
 transmission.

Sun, et al. Informational [Page 7]

RFC 3652 Handle System Protocol (v2.1) November 2003

 .----------------------.
 | | ; Message wrapper for proper message
 | Message Envelope | ; delivery. Not protected by the
 | | ; digital signature in the Message
 | | ; Credential.
 |----------------------|
 | | ; Common data fields for all handle
 | Message Header | ; operations.
 | |
 |----------------------|
 | | ; Specific data fields for each
 | Message Body | ; request/response.
 | |
 |----------------------|
 | | ; Contains digital signature or
 | Message Credential | ; message authentication code (MAC)
 | | ; upon Message Header and Message
 ’----------------------’ ; Body.

 Fig 2.2: Message format under the Handle protocol

2.2.1. Message Envelope

 Each message begins with a Message Envelope under the Handle
 protocol. If a message has to be truncated before its transmission,
 each truncated portion must also begin with a Message Envelope.

 The Message Envelope allows the reassembly of the message at the
 receiving end. It has a fixed size of 20 octets and consists of
 seven fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 .---.
 | MajorVersion | MinorVersion | MessageFlag |
 |---|
 | SessionId |
 |---|
 | RequestId |
 |---|
 | SequenceNumber |
 |---|
 | MessageLength |
 ’---’

Sun, et al. Informational [Page 8]

RFC 3652 Handle System Protocol (v2.1) November 2003

2.2.1.1. <MajorVersion> and <MinorVersion>

 The <MajorVersion> and <MinorVersion> are used to identify the
 version of the Handle protocol. Each of them is defined as a one-
 byte unsigned integer. This specification defines the protocol
 version whose <MajorVersion> is 2 and <MinorVersion> is 1.

 <MajorVersion> and <MinorVersion> are designed to allow future
 backward compatibility. A difference in <MajorVersion> indicates
 major variation in the protocol format and the party with the lower
 <MajorVersion> will have to upgrade its software to ensure precise
 communication. An increment in <MinorVersion> is made when
 additional capabilities are added to the protocol without any major
 change to the message format.

2.2.1.2. <MessageFlag>

 The <MessageFlag> consists of two octets defined as follows:

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 .---.
 |CP |EC |TC | Reserved |
 ’---’

 Bit 0 is the CP (ComPressed) flag that indicates whether the message
 (excluding the Message Envelope) is compressed. If the CP bit is set
 (to 1), the message is compressed. Otherwise, the message is not
 compressed. The Handle protocol uses the same compression method as
 used by the FTP protocol[8].

 Bit 1 is the EC (EnCrypted) flag that indicates whether the message
 (excluding the Message Envelope) is encrypted. The EC bit should
 only be set under an established session where a session key is in
 place. If the EC bit is set (to 1), the message is encrypted using
 the session key. Otherwise the message is not encrypted.

 Bit 2 is the TC (TrunCated) flag that indicates whether this is a
 truncated message. Message truncation happens most often when
 transmitting a large message over the UDP protocol. Details of
 message truncation (or fragmentation) will be discussed in section
 2.3.

 Bits 3 to 15 are currently reserved and must be set to zero.

Sun, et al. Informational [Page 9]

RFC 3652 Handle System Protocol (v2.1) November 2003

2.2.1.3. <SessionId>

 The <SessionId> is a four-byte unsigned integer that identifies a
 communication session between the client and server.

 Session and its <SessionId> are assigned by a server, either upon an
 explicit request from a client or when multiple message exchanges are
 expected to fulfill the client’s request. For example, the server
 will assign a unique <SessionId> in its response if it has to
 authenticate the client. A client may explicitly ask the server to
 set up a session as a virtually private communication channel like
 SSL [4]. Requests from clients without an established session must
 have their <SessionId> set to zero. The server must assign a unique
 non-zero <SessionId> for each new session. It is also responsible
 for terminating those sessions that are not in use after some period
 of time.

 Both clients and servers must maintain the same <SessionId> for
 messages exchanged under an established session. A message whose
 <SessionId> is zero indicates that no session has been established.

 The session and its state information may be shared among multiple
 handle operations. They may also be shared over multiple TCP
 connections as well. Once a session is established, both client and
 server must maintain their state information according to the
 <SessionId>. The state information may include the stage of the
 conversation, the other party’s authentication information, and the
 session key that was established for message encryption or
 authentication. Details of these are discussed in section 3.8.

2.2.1.4. <RequestId>

 Each request from a client is identified by a <RequestId>, a 4-byte
 unsigned integer set by the client. Each <RequestId> must be unique
 from all other outstanding requests from the same client. The
 <RequestId> allows the client to keep track of its requests, and any
 response from the server must include the correct <RequestId>.

2.2.1.5. <SequenceNumber>

 Messages under the Handle protocol may be truncated during their
 transmission (e.g., under UDP). The <SequenceNumber> is a 4-byte
 unsigned integer used as a counter to keep track of each truncated
 portion of the original message. The message recipient can
 reassemble the original message based on the <SequenceNumber>. The
 <SequenceNumber> must start with 0 for each message. Each truncated
 message must set its TC flag in the Message Envelope. Messages that
 are not truncated must set their <SequenceNumber> to zero.

Sun, et al. Informational [Page 10]

RFC 3652 Handle System Protocol (v2.1) November 2003

2.2.1.6. <MessageLen>

 A 4-byte unsigned integer that specifies the total number of octets
 of any message, excluding those in the Message Envelope. The length
 of any single message exchanged under the Handle protocol is limited
 by the range of a 4-byte unsigned integer. Longer data can be
 transmitted as multiple messages with a common <RequestId>.

2.2.2. Message Header

 The Message Header contains the common data elements among any
 protocol operation. It has a fixed size of 24 octets and consists of
 eight fields.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 .---.
 | OpCode |
 |---|
 | ResponseCode |
 |---|
 | OpFlag |
 |---|
 | SiteInfoSerialNumber | RecursionCount| |
 |---|
 | ExpirationTime |
 |---|
 | BodyLength |
 ’---’

 Every message that is not truncated must have a Message Header. If a
 message has to be truncated for its transmission, the Message Header
 must appear in the first truncated portion of the message.

 This is different from the Message Envelope, which appears in each
 truncated portion of the message.

2.2.2.1. <OpCode>

 The <OpCode> stands for operation code, which is a four-byte unsigned
 integer that specifies the intended operation. The following table
 lists the <OpCode>s that MUST be supported by all implementations in
 order to conform to the base protocol specification. Each operation
 code is given a symbolic name that is used throughout this document
 for easy reference.

Sun, et al. Informational [Page 11]

RFC 3652 Handle System Protocol (v2.1) November 2003

 Op_Code Symbolic Name Remark
 --------- ------------- ------

 0 OC_RESERVED Reserved
 1 OC_RESOLUTION Handle query
 2 OC_GET_SITEINFO Get HS_SITE values

 100 OC_CREATE_HANDLE Create new handle
 101 OC_DELETE_HANDLE Delete existing handle
 102 OC_ADD_VALUE Add handle value(s)
 103 OC_REMOVE_VALUE Remove handle value(s)
 104 OC_MODIFY_VALUE Modify handle value(s)
 105 OC_LIST_HANDLE List handles
 106 OC_LIST_NA List sub-naming authorities

 200 OC_CHALLENGE_RESPONSE Response to challenge
 201 OC_VERIFY_RESPONSE Verify challenge response

 300
 : { Reserved for handle server administration }
 399

 400 OC_SESSION_SETUP Session setup request
 401 OC_SESSION_TERMINATE Session termination request
 402 OC_SESSION_EXCHANGEKEY Session key exchange

 A detailed description of each of these <OpCode>s can be found in
 section 3 of this document. In general, clients use the <OpCode> to
 tell the server what kind of handle operation they want to
 accomplish. Response from the server must maintain the same <OpCode>
 as the original request and use the <ResponseCode> to indicate the
 result.

2.2.2.2. <ResponseCode>

 The <ResponseCode> is a 4-byte unsigned integer that is given by a
 server to indicate the result of any service request. The list of
 <ResponseCode>s used in the Handle protocol is defined in the
 following table. Each response code is given a symbolic name that is
 used throughout this document for easy reference.

Sun, et al. Informational [Page 12]

RFC 3652 Handle System Protocol (v2.1) November 2003

 Res. Code Symbolic Name Remark
 --------- ------------- ------

 0 RC_RESERVED Reserved for request
 1 RC_SUCCESS Success response
 2 RC_ERROR General error
 3 RC_SERVER_BUSY Server too busy to respond
 4 RC_PROTOCOL_ERROR Corrupted or
 unrecognizable message
 5 RC_OPERATION_DENIED Unsupported operation
 6 RC_RECUR_LIMIT_EXCEEDED Too many recursions for
 the request

 100 RC_HANDLE_NOT_FOUND Handle not found
 101 RC_HANDLE_ALREADY_EXIST Handle already exists
 102 RC_INVALID_HANDLE Encoding (or syntax) error

 200 RC_VALUE_NOT_FOUND Value not found
 201 RC_VALUE_ALREADY_EXIST Value already exists
 202 RC_VALUE_INVALID Invalid handle value

 300 RC_EXPIRED_SITE_INFO SITE_INFO out of date
 301 RC_SERVER_NOT_RESP Server not responsible
 302 RC_SERVICE_REFERRAL Server referral
 303 RC_NA_DELEGATE Naming authority delegation
 takes place.

 400 RC_NOT_AUTHORIZED Not authorized/permitted
 401 RC_ACCESS_DENIED No access to data
 402 RC_AUTHEN_NEEDED Authentication required
 403 RC_AUTHEN_FAILED Failed to authenticate
 404 RC_INVALID_CREDENTIAL Invalid credential
 405 RC_AUTHEN_TIMEOUT Authentication timed out
 406 RC_UNABLE_TO_AUTHEN Unable to authenticate

 500 RC_SESSION_TIMEOUT Session expired
 501 RC_SESSION_FAILED Unable to establish session
 502 RC_NO_SESSION_KEY No session yet available
 503 RC_SESSION_NO_SUPPORT Session not supported
 504 RC_SESSION_KEY_INVALID Invalid session key

 900 RC_TRYING Request under processing
 901 RC_FORWARDED Request forwarded to
 another server
 902 RC_QUEUED Request queued for later
 processing

Sun, et al. Informational [Page 13]

RFC 3652 Handle System Protocol (v2.1) November 2003

 Response codes under 10000 are reserved for system use. Any message
 with a response code under 10000 but not listed above should be
 treated as an unknown error. Response codes above 10000 are user
 defined and can be used for application specific purposes.

 Detailed descriptions of these <ResponseCode>s can be found in
 section 3 of this document. In general, any request from a client
 must have its <ResponseCode> set to 0. The response message from the
 server must have a non-zero <ResponseCode> to indicate the result.
 For example, a response message from a server with <ResponseCode> set
 to RC_SUCCESS indicates that the server has successfully fulfilled
 the client’s request.

2.2.2.3. <OpFlag>

 The <OpFlag> is a 32-bit bit-mask that defines various control
 options for protocol operation. The following figure shows the
 location of each option flag in the <OpFlag> field.

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 .---.
 |AT |CT |ENC|REC|CA |CN |KC |PO |RD | Reserved |
 |---|
 | Reserved |
 ’---’

 AT - AuThoritative bit. A request with the AT bit set (to 1)
 indicates that the request should be directed to the
 primary service site (instead of any mirroring sites). A
 response message with the AT bit set (to 1) indicates
 that the message is returned from a primary server
 (within the primary service site).

 CT - CerTified bit. A request with the CT bit set (to 1) asks
 the server to sign its response with its digital
 signature. A response with the CT bit set (to 1)
 indicates that the message is signed. The server must
 sign its response if the request has its CT bit set (to
 1). If the server fails to provide a valid signature in
 its response, the client should discard the response and
 treat the request as failed.

 ENC - ENCryption bit. A request with the ENC bit set (to 1)
 requires the server to encrypt its response using the
 pre-established session key.

Sun, et al. Informational [Page 14]

RFC 3652 Handle System Protocol (v2.1) November 2003

 REC - RECursive bit. A request with the REC bit set (to 1)
 asks the server to forward the query on behalf of the
 client if the request has to be processed by another
 handle server. The server may honor the request by
 forwarding the request to the appropriate handle server
 and passing on any result back to the client. The server
 may also deny any such request by sending a response
 with <ResponseCode> set to RC_SERVER_NOT_RESP.

 CA - Cache Authentication. A request with the CA bit set (to
 1) asks the caching server (if any) to authenticate any
 server response (e.g., verifying the server’s signature)
 on behalf of the client. A response with the CA bit set
 (to 1) indicates that the response has been
 authenticated by the caching server.

 CN - ContiNuous bit. A message with the CN bit set (to 1)
 tells the message recipient that more messages that are
 part of the same request (or response) will follow. This
 happens if a request (or response) has data that is too
 large to fit into any single message and has to be
 fragmented into multiple messages.

 KC - Keep Connection bit. A message with the KC bit set
 requires the message recipient to keep the TCP
 connection open (after the response is sent back). This
 allows the same TCP connection to be used for multiple
 handle operations.

 PO - Public Only bit. Used by query operations only. A query
 request with the PO bit set (to 1) indicates that the
 client is only asking for handle values that have the
 PUB_READ permission. A request with PO bit set to zero
 asks for all the handle values regardless of their read
 permission. If any of the handle values require
 ADMIN_READ permission, the server must authenticate the
 client as the handle administrator.

 RD - Request-Digest bit. A request with the RD bit set (to 1)
 asks the server to include in its response the message
 digest of the request. A response message with the RD
 bit set (to 1) indicates that the first field in the
 Message Body contains the message digest of the original
 request. The message digest can be used to check the
 integrity of the server response. Details of these are
 discussed later in this document.

Sun, et al. Informational [Page 15]

RFC 3652 Handle System Protocol (v2.1) November 2003

 All other bits in the <OpFlag> field are reserved and must be set to
 zero.

 In general, servers must honor the <OpFlag> specified in the request.
 If a requested option cannot be met, the server should return an
 error message with the proper <ResponseCode> as defined in the
 previous section.

2.2.2.4. <SiteInfoSerialNumber>

 The <SiteInfoSerialNumber> is a two-byte unsigned integer. The
 <SiteInfoSerialNumber> in a request refers to the <SerialNumber> of
 the HS_SITE value used by the client (to access the server). Servers
 can check the <SiteInfoSerialNumber> in the request to find out if
 the client has up-to-date service information.

 When possible, the server should fulfill a client’s request even if
 the service information used by the client is out-of-date. However,
 the response message should specify the latest version of service
 information in the <SiteInforSerialNumber> field. Clients with out-
 of-date service information can update the service information from
 the Global Handle Registry. If the server cannot fulfill a client’s
 request due to expired service information, it should reject the
 request and return an error message with <ResponseCode> set to
 RC_EXPIRED_SITE_INFO.

2.2.2.5. <RecursionCount>

 The <RecursionCount> is a one-byte unsigned integer that specifies
 the number of service recursions. Service recursion happens if the
 server has to forward the client’s request to another server. Any
 request directly from the client must have its <RecursionCount> set
 to 0. If the server has to send a recursive request on behalf of the
 client, it must increment the <RecursionCount> by 1. Any response
 from the server must maintain the same <RecursionCount> as the one in
 the request. To prevent an infinite loop of service recursion, the
 server should be configurable to stop sending a recursive request
 when the <RecursionCount> reaches a certain value.

2.2.2.6. <ExpirationTime>

 The <ExpirationTime> is a 4-byte unsigned integer that specifies the
 time when the message should be considered expired, relative to
 January 1st, 1970 GMT, in seconds. It is set to zero if no
 expiration is expected.

Sun, et al. Informational [Page 16]

RFC 3652 Handle System Protocol (v2.1) November 2003

2.2.2.7. <BodyLength>

 The <BodyLength> is a 4-byte unsigned integer that specifies the
 number of octets in the Message Body. The <BodyLength> does not
 count the octets in the Message Header or those in the Message
 Credential.

2.2.3. Message Body

 The Message Body always follows the Message Header. The number of
 octets in the Message Body can be determined from the <BodyLength> in
 the Message Header. The Message Body may be empty. The exact format
 of the Message Body depends on the <OpCode> and the <ResponseCode> in
 the Message Header. Details of the Message Body under each <OpCode>
 and <ResponseCode> are described in section 3 of this document.

 For any response message, if the Message Header has its RD bit (in
 <OpFlag>) set to 1, the Message Body must begin with the message
 digest of the original request. The message digest is defined as
 follows:

 <RequestDigest> ::= <DigestAlgorithmIdentifier>
 <MessageDigest>

 where

 <DigestAlgorithmIdentifier>
 An octet that identifies the algorithm used to generate the
 message digest. If the octet is set to 1, the digest is
 generated using the MD5 [9] algorithm. If the octet is set
 to 2, SHA-1 [10] algorithm is used.

 <MessageDigest>
 The message digest itself. It is calculated upon the
 Message Header and the Message Body of the original request.
 The length of the field is fixed according to the digest
 algorithm. For MD5 algorithm, the length is 16 octets. For
 SHA-1, the length is 20 octets.

 The Message Body may be truncated into multiple portions during its
 transmission (e.g., over UDP). Recipients of such a message may
 reassemble the Message Body from each portion based on the
 <SequenceNumber> in the Message Envelope.

Sun, et al. Informational [Page 17]

RFC 3652 Handle System Protocol (v2.1) November 2003

2.2.4. Message Credential

 The Message Credential is primarily used to carry any digital
 signatures signed by the message issuer. It may also carry the
 Message Authentication Code (MAC) if a session key has been
 established. The Message Credential is used to protect contents in
 the Message Header and the Message Body from being tampered with
 during transmission. The format of the Message Credential is
 designed to be semantically compatible with PKCS#7 [5]. Each Message
 Credential consists of the following fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 .---.
 | CredentialLength |
 |---|
 | Version | Reserved | Options |
 |---|
 |
 | Signer: <Handle, Index>
 |
 |---|
 | Type (UTF8-String) |
 |---|
 |
 | SignedInfo: <Length> : 4-byte unsigned integer
 | DigestAlgorithm: <UTF8-String>
 | SignedData: <Length, Signature>
 |
 ’---’

 where

 <CredentialLength>
 A 4-byte unsigned integer that specifies the number of octets in
 the Message Credential. It must be set to zero if the message has
 no Message Credential.

 <Version>
 An octet that identifies the version number of the Message
 Credential. The version number specified in this document is
 zero.

 <Reserved>
 An octet that must be set to zero.

 <Options>
 Two octets reserved for various cryptography options.

Sun, et al. Informational [Page 18]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <Signer> ::= <HANDLE>
 <INDEX>
 A reference to a handle value in terms of the <HANDLE> and the
 <INDEX> of the handle value. The handle value may contain the
 public key, or the X.509 certificate, that can be used to
 validate the digital signature.

 <Type>
 A UTF8-String that indicates the type of content in the
 <SignedInfo> field (described below). It may contain HS_DIGEST if
 <SignedInfo> contains the message digest, or HS_MAC if
 <SignedInfo> contains the Message Authentication Code (MAC). The
 <Type> field will specify the signature algorithm identifier if
 <SignedInfo> contains a digital signature. For example, with the
 <Type> field set to HS_SIGNED_PSS, the <SignedInfo> field will
 contain the digital signature generated using the RSA-PSS
 algorithm [16]. If the <Type> field is set to HS_SIGNED, the
 <SignedInfo> field will contain the digital signature generated
 from a DSA public key pair.

 <SignedInfo> ::= <Length>
 <DigestAlgorithm>
 <SignedData>
 where

 <Length>
 A 4-byte unsigned integer that specifies the number of
 octets in the <SignedInfo> field.

 <DigestAlgorithm>
 A UTF8-String that refers to the digest algorithm used to
 generate the digital signature. For example, the value
 "SHA-1" indicates that the SHA-1 algorithm is used to
 generate the message digest for the signature.

 <SignedData> ::= <LENGTH>
 <SIGNATURE>
 where

 <LENGTH>
 A 4-byte unsigned integer that specifies the number of
 octets in the <SIGNATURE>.

 <SIGNATURE>
 Contains the digital signature or the MAC over the
 Message Header and Message Body. The syntax and
 semantics of the signature depend on the <Type> field

Sun, et al. Informational [Page 19]

RFC 3652 Handle System Protocol (v2.1) November 2003

 and the public key referenced in the <Signer> field.
 For example, if the <Type> field is "HS_SIGNED" and
 the public key referred to by the <Signer> field is
 a DSA [6] public key, the signature will be the
 ASN.1 octet string representation of the parameter R
 and S as described in [7]. If the <Signer> field
 refers to a handle value that contains a X.509
 certificate, the signature should be encoded according
 to RFC 3279 and RFC 3280 [14, 15].

 The Message Credential may contain the message authentication code
 (MAC) generated using a pre-established session key. In this case,
 the <Signer> field must set its <HANDLE> to a zero-length UTF8-String
 and its <INDEX> to the <SessionId> specified in the Message Envelope.
 The <Signature> field must contain the MAC in its <SIGNATURE> field.
 The MAC is the result of the one-way hash over the concatenation of
 the session key, the <Message Header>, the <MessageBody>, and the
 session key again.

 The Message Credential in a response message may contain the digital
 signature signed by the server. The server’s public key can be found
 in the service information used by the client to send the request to
 the server. In this case, the client should ignore any reference in
 the <Signer> field and use the public key in the service information
 to verify the signature.

 The Message Credential can also be used for non-repudiation purposes.
 This happens if the Message Credential contains a server’s digital
 signature. The signature may be used as evidence to demonstrate that
 the server has rendered its service in response to a client’s
 request.

 The Message Credential provides a mechanism for safe transmission of
 any message between the client and server. Any message whose Message
 Header and Message Body complies with its Message Credential suggests
 that the message indeed comes from its originator and assures that
 the message has not been tampered with during its transmission.

2.3. Message Transmission

 A large message may be truncated into multiple packets during its
 transmission. For example, to fit the size limit of a UDP packet,
 the message issuer must truncate any large message into multiple UDP
 packets before its transmission. The message recipient must
 reassemble the message from these truncated packets before further
 processing. Message truncation must be carried out over the entire

Sun, et al. Informational [Page 20]

RFC 3652 Handle System Protocol (v2.1) November 2003

 message except the Message Envelope. A new Message Envelope has to
 be inserted in front of each truncated packet before its
 transmission. For example, a large message that consists of

 .--.
 | Message Envelope | Message Header, Body, Credential |
 ’--’

 may be truncated into:

 .--.
 | Message Envelope 1 | Truncated_Packet 1 |
 ’--’
 .--.
 | Message Envelope 2 | Truncated_Packet 2 |
 ’--’

 .--.
 | Message Envelope N | Truncated Packet N |
 ’--’

 where the "Truncated_packet 1", "Truncated_packet 2", ..., and
 "Truncated_packet N" result from truncating the Message Header, the
 Message Body and the Message Credential. Each "Message Envelope i"
 (inserted before each truncation) must set its TC flag to 1 and
 maintain the proper sequence count (in the <SequenceNumber>). Each
 "Message Envelope i" must also set its <MessageLength> to reflect the
 size of the packet. The recipient of these truncated packets can
 reassemble the message by concatenating these packets based on their
 <SequenceNumber>.

3. Handle Protocol Operations

 This section describes the details of each protocol operation in
 terms of messages exchanged between the client and server. It also
 defines the format of the Message Body according to each <OpCode> and
 <ResponseCode> in the Message Header.

3.1. Client Bootstrapping

3.1.1. Global Handle Registry and its Service Information

 The service information for the Global Handle Registry (GHR) allows
 clients to contact the GHR to find out the responsible service
 components for their handles. The service information is a set of
 HS_SITE values assigned to the root handle "0.NA/0.NA" and is also

Sun, et al. Informational [Page 21]

RFC 3652 Handle System Protocol (v2.1) November 2003

 called the root service information. The root service information
 may be distributed along with the client software, or be downloaded
 from the Handle System website at http://www.handle.net.

 Changes to the root service information are identified by the
 <SerialNumber> in the HS_SITE values. A server at GHR can find out
 if the root service information used by the client is outdated by
 checking the <SerialNumber> in the client’s request. The client
 should update the root service information if the <ResponseCode> of
 the response message is RC_EXPIRED_SITE_INFO. Clients may obtain the
 most up-to-date root service information from the root handle. The
 GHR must sign the root service information using the public key
 specified in the outdated service information (identified in the
 client’s request) so that the client can validate the signature.

3.1.2. Locating the Handle System Service Component

 Each handle under the Handle System is managed by a unique handle
 service component (e.g., LHS). For any given handle, the responsible
 service component (and its service information) can be found from its
 naming authority handle. Before resolving any given handle, the
 client needs to find the responsible service component by querying
 the naming authority handle from the GHR.

 For example, to find the responsible LHS for the handle "1000/abc",
 client software can query the GHR for the HS_SITE (or HS_SERV) values
 assigned to the naming authority handle "0.NA/1000". The set of
 HS_SITE values provides the service information of the LHS that
 manages every handle under the naming authority "1000". If no
 HS_SITE values are found, the client can check if there is any
 HS_SERV value assigned to the naming authority handle. The HS_SERV
 value provides the service handle that maintains the service
 information for the LHS. Service handles are used to manage the
 service information shared by different naming authorities.

 It is possible that the naming authority handle requested by the
 client does not reside at the GHR. This happens when naming
 authority delegation takes place. Naming authority delegation
 happens when a naming authority delegates an LHS to manage all its
 child naming authorities. In this case, the delegating naming
 authority must contain the service information, a set of
 HS_NA_DELEGATE values, of the LHS that manages its child naming
 authorities.

 All top-level naming authority handles must be registered and managed
 by the GHR. When a server at the GHR receives a request for a naming
 authority that has been delegated to an LHS, it must return a message
 with the <ResponseCode> set to RC_NA_DELEGATE, along with the

Sun, et al. Informational [Page 22]

RFC 3652 Handle System Protocol (v2.1) November 2003

 HS_NA_DELAGATE values from the nearest ancestor naming authority.
 The client can query the LHS described by the HS_NA_DELAGATE values
 for the delegated naming authority handle. In practice, the ancestor
 naming authority should make itself available to any handle server
 within the GHR, by replicating itself at the time of delegation.
 This will prevent any cross-queries among handle servers (within a
 service site) when the naming authority in query and the ancestor
 naming authority do not hash into the same handle server.

3.1.3. Selecting the Responsible Server

 Each handle service component is defined in terms of a set of HS_SITE
 values. Each of these HS_SITE values defines a service site within
 the service component. A service site may consist of a group of
 handle servers. For any given handle, the responsible handle server
 within the service component can be found following this procedure:

 1. Select a preferred service site.

 Each service site is defined in terms of an HS_SITE value. The
 HS_SITE value may contain a <Description> or other attributes
 (under the <AttributeList>) to help the selection. Clients
 must select the primary service site for any administrative
 operations.

 2. Locate the responsible server within the service site.

 This can be done as follows: Convert every ASCII character in
 the handle to its upper case. Calculate the MD5 hash of the
 converted handle string according to the <HashOption> given in
 the HS_SITE value. Take the last 4 bytes of the hash result as
 a signed integer. Modulo the absolute value of the integer by
 the <NumOfServer> given in the HS_SITE value. The result is
 the sequence number of the <ServerRecord> listed in the HS_SITE
 value. For example, if the result of the modulation is 2, the
 third <ServerRecord> listed in the <HS_SITE> should be
 selected. The <ServerRecord> defines the responsible handle
 server for the given handle.

3.2. Query Operation

 A query operation consists of a client sending a query request to the
 responsible handle server and the server returning the query result
 to the client. Query requests are used to retrieve handle values
 assigned to any given handle.

Sun, et al. Informational [Page 23]

RFC 3652 Handle System Protocol (v2.1) November 2003

3.2.1. Query Request

 The Message Header of any query request must set its <OpCode> to
 OC_RESOLUTION (defined in section 2.2.2.1) and <ResponseCode> to 0.

 The Message Body for any query request is defined as follows:

 <Message Body of Query Request> ::= <Handle>
 <IndexList>
 <TypeList>

 where

 <Handle>
 A UTF8-String (as defined in section 2.1.4) that specifies
 the handle to be resolved.

 <IndexList>
 A 4-byte unsigned integer followed by an array of 4-byte
 unsigned integers. The first integer indicates the number
 of integers in the integer array. Each number in the
 integer array is a handle value index and refers to a handle
 value to be retrieved. The client sets the first integer to
 zero (followed by an empty array) to ask for all the handle
 values regardless of their index.

 <TypeList>
 A 4-byte unsigned integer followed by a list of UTF8-
 Strings. The first integer indicates the number of
 UTF8-Strings in the list that follows. Each UTF8-String in
 the list specifies a data type. This tells the server to
 return all handle values whose data type is listed in the
 list. If a UTF8-String ends with the ’.’ (0x2E) character,
 the server must return all handle values whose data type is
 under the type hierarchy specified in the UTF8-String. The
 <TypeList> may contain no UTF8-String if the first integer
 is 0. In this case, the server must return all handle
 values regardless of their data type.

 If a query request does not specify any index or data type and the PO
 flag (in the Message Header) is set, the server will return all the
 handle values that have the PUBLIC_READ permission. Clients can also
 send queries without the PO flag set. In this case, the server will
 return all the handle values with PUBLIC_READ permission and all the
 handle values with ADMIN_READ permission. If the query requests a
 specific handle value via the value index and the value does not have
 PUBLIC_READ permission, the server should accept the request (and
 authenticate the client) even if the request has its PO flag set.

Sun, et al. Informational [Page 24]

RFC 3652 Handle System Protocol (v2.1) November 2003

 If a query consists of a non-empty <IndexList> but an empty
 <TypeList>, the server should only return those handle values whose
 indexes are listed in the <IndexList>. Likewise, if a query consists
 of a non-empty <TypeList> but an empty <IndexList>, the server should
 only return those handle values whose data types are listed in the
 <TypeList>.

 When both <IndexList> and <TypeList> fields are non-empty, the server
 should return all handle values whose indexes are listed in the
 <IndexList> AND all handle values whose data types are listed in the
 <TypeList>.

3.2.2. Successful Query Response

 The Message Header of any query response must set its <OpCode> to
 OC_RESOLUTION. A successful query response must set its
 <ResponseCode> to RC_SUCCESS.

 The message body of the successful query response is defined as
 follows:

 <Message Body of Successful Query Response> ::= [<RequestDigest>]
 <Handle>
 <ValueList>

 where

 <RequestDigest>
 Optional field as defined in section 2.2.3.

 <Handle>
 A UTF8-String that specifies the handle queried by the
 client.

 <ValueList>
 A 4-byte unsigned integer followed by a list of handle
 values. The integer specifies the number of handle values
 in the list. The encoding of each handle value follows the
 specification given in [2] (see section 3.1). The integer
 is set to zero if there is no handle value that satisfies
 the query.

Sun, et al. Informational [Page 25]

RFC 3652 Handle System Protocol (v2.1) November 2003

3.2.3. Unsuccessful Query Response

 If a server cannot fulfill a client’s request, it must return an
 error message. The general format for any error message from the
 server is specified in section 3.3 of this document.

 For example, a server must return an error message if the queried
 handle does not exist in its database. The error message will have
 an empty message body and have its <ResponseCode> set to
 RC_HANDLE_NOT_FOUND.

 Note that a server should NOT return an RC_HANDLE_NOT_FOUND message
 if the server is not responsible for the handle being queried. It is
 possible that the queried handle exists but is managed by another
 handle server (under some other handle service). When this happens,
 the server should either send a service referral (see section 3.4) or
 simply return an error message with <ResponseCode> set to
 RC_SERVER_NOT_RESP.

 The server may return an error message with <ResponseCode> set to
 RC_SERVER_BUSY if the server is too busy to process the request.
 Like RC_HANDLE_NOT_FOUND, an RC_SERVER_BUSY message also has an empty
 message body.

 Servers should return an RC_ACCESS_DENIED message if the request asks
 for a specific handle value (via the handle value index) that has
 neither PUBLIC_READ nor ADMIN_READ permission.

 A handle Server may ask its client to authenticate itself as the
 handle administrator during the resolution. This happens if any
 handle value in query has ADMIN_READ permission, but no PUBLIC_READ
 permission. Details of client authentication are described later in
 this document.

3.3. Error Response from Server

 A handle server will return an error message if it encounters an
 error when processing a request. Any error response from the server
 must maintain the same <OpCode> (in the message header) as the one in
 the original request. Each error condition is identified by a unique
 <ResponseCode> as defined in section 2.2.2.2 of this document.

Sun, et al. Informational [Page 26]

RFC 3652 Handle System Protocol (v2.1) November 2003

 The Message Body of an error message may be empty. Otherwise it
 consists of the following data fields (unless otherwise specified):

 <Message Body of Error Response from Server> ::= [<RequestDigest>]
 <ErrorMessage>
 [<IndexList>]

 where

 <RequestDigest>
 Optional field as defined in section 2.2.3.

 <ErrorMessage>
 A UTF8-String that explains the error.

 <IndexList>
 An optional field. When not empty, it consists of a 4-byte
 unsigned integer followed by a list of handle value indexes.
 The first integer indicates the number of indexes in the
 list. Each index in the list is a 4-byte unsigned integer
 that refers to a handle value that contributed to the error.
 An example would be a server that is asked to add three
 handle values, with indexes 1, 2, and 3, and handle values
 with indexes of 1 and 2 already in existence. In this case,
 the server could return an error message with <REsponseCode>
 set to RC_VALUE_ALREADY_EXIST and add index 1 and 2 to the
 <IndexList>. Note that the server is not obligated to
 return the complete list of handle value indexes that may
 have caused the error.

3.4. Service Referral

 A handle server may receive requests for handles that are managed by
 some other handle server or service. When this happens, the server
 has the option to either return a referral message that directs the
 client to the proper handle service, or simply return an error
 message with <ResponseCode> set to RC_SERVER_NOT_RESP. Service
 referral also happens when ownership of handles moves from one handle
 service to another. It may also be used by any local handle service
 to delegate its service into multiple service layers.

 The Message Header of a service referral must maintain the same
 <OpCode> as the one in the original request and set its
 <ResponseCode> to RC_SERVICE_REFERRAL.

Sun, et al. Informational [Page 27]

RFC 3652 Handle System Protocol (v2.1) November 2003

 The Message Body of any service referral is defined as follows:

 <Message Body of Service Referral> ::= [<RequestDigest>]
 <ReferralHandle>
 [<ValueList>]

 where

 <RequestDigest>
 Optional field as defined in section 2.2.3.

 <ReferralHandle>
 A UTF8-String that identifies the handle (e.g., a service
 handle) that maintains the referral information (i.e., the
 service information of the handle service in which this
 refers). If the <ReferralHandle> is set to "0.NA/0.NA",
 it is referring the client to the GHR.

 <ValueList>
 An optional field that must be empty if the <ReferralHandle>
 is provided. When not empty, it consists of a 4-byte
 unsigned integer, followed by a list of HS_SITE values. The
 integer specifies the number of HS_SITE values in the list.

 Unlike regular query responses that may consist of handle values of
 any data type, a service referral can only have zero or more HS_SITE
 values in its <ValueList>. The <ReferralHandle> may contain an empty
 UTF8-String if the HS_SITE values in the <ValueList> are not
 maintained by any handle.

 Care must be taken by clients to avoid any loops caused by service
 referrals. It is also the client’s responsibility to authenticate
 the service information obtained from the service referral. A client
 should always use its own copy of the GHR service information if the
 <ReferralHandle> is set to "0.NA/0.NA".

3.5. Client Authentication

 Clients are asked to authenticate themselves as handle administrators
 when querying for any handle value with ADMIN_READ but no PUBLIC_READ
 permission. Client authentication is also required for any handle
 administration requests that require administrator privileges. This
 includes adding, removing, or modifying handles or handle values.

 Client authentication consists of multiple messages exchanged between
 the client and server. Such messages include the challenge from the
 server to the client to authenticate the client, the challenge-
 response from the client in response to the server’s challenge, and

Sun, et al. Informational [Page 28]

RFC 3652 Handle System Protocol (v2.1) November 2003

 the verification request and response message if secret key
 authentication takes place. Messages exchanged during the
 authentication are correlated via a unique <SessionId> assigned by
 the server. For each authentication session, the server needs to
 maintain the state information that includes the server’s challenge,
 the challenge-response from the client, as well as the original
 client request.

 The authentication starts with a response message from the server
 that contains a challenge to the client. The client must respond to
 the challenge with a challenge-response message. The server
 validates the challenge-response, either by verifying the digital
 signature inside the challenge-response, or by sending a verification
 request to another handle server (herein referred to as the
 verification server), that maintains the secret key for the
 administrator. The purpose of the challenge and the challenge-
 response is to prove to the server that the client possesses the
 private key (or the secret key) of the handle administrator. If the
 authentication fails, an error response will be sent back with the
 <ResponseCode> set to RC_AUTHEN_FAILED.

 Upon successful client authentication, the server must also make sure
 that the administrator is authorized for the request. If the
 administrator has sufficient privileges, the server will process the
 request and send back the result. If the administrator does not have
 sufficient privileges, the server will return an error message with
 <ResponseCode> set to RC_NOT_AUTHORIZED.

 The following sections provide details of each message exchanged
 during the authentication process.

3.5.1. Challenge from Server to Client

 The Message Header of the CHALLENGE must keep the same <OpCode> as
 the original request and set the <ResponseCode> to RC_AUTH_NEEDED.
 The server must assign a non-zero unique <SessionId> in the Message
 Envelope to keep track of the authentication. It must also set the
 RD flag of the <OpFlag> (see section 2.2.2.3) in the Message Header,
 regardless of whether the original request had the RD bit set or not.

Sun, et al. Informational [Page 29]

RFC 3652 Handle System Protocol (v2.1) November 2003

 The Message Body of the server’s CHALLENGE is defined as follows:

 <Message Body of Server’s Challenge> ::= <RequestDigest>
 <Nonce>
 where

 <RequestDigest>
 Message Digest of the request message, as defined in section
 2.2.3.

 <Nonce>
 A 4-byte unsigned integer followed by a random string
 generated by the server via a secure random number
 generator. The integer specifies the number of octets in
 the random string. The size of the random string should be
 no less than 20 octets.

 Note that the server will not sign the challenge if the client did
 not request the server to do so. If the client worries about whether
 it is speaking to the right server, it may ask the server to sign the
 <Challenge>. If the client requested the server to sign the
 <Challenge> but failed to validate the server’s signature, the client
 should discard the server’s response and reissue the request to the
 server.

3.5.2. Challenge-Response from Client to Server

 The Message Header of the CHALLENGE_RESPONSE must set its <OpCode> to
 OC_CHALLENGE_RESPONSE and its <ResponseCode> to 0. It must also keep
 the same <SessionId> (in the Message Envelope) as specified in the
 challenge from the server.

 The Message Body of the CHALLENGE_RESPONSE request is defines as
 follows:

 <Message Body of CHALLENGE_RESPONSE> ::= <AuthenticationType>
 <KeyHandle>
 <KeyIndex>
 <ChallengeResponse>

 where

 <AuthenticationType>
 A UTF8-String that identifies the type of authentication key
 used by the client. For example, the field is set to
 "HS_SECKEY" if the client chooses to use a secret key for
 its authentication. The field is set to "HS_PUBKEY" if a
 public key is used instead.

Sun, et al. Informational [Page 30]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <KeyHandle>
 A UTF8-String that identifies the handle that holds the
 public or secret key of the handle administrator.

 <KeyIndex>
 A 4-byte unsigned integer that specifies the index of the
 handle value (of the <KeyHandle>) that holds the public or
 secret key of the administrator.

 <ChallengeResponse>
 Contains either the Message Authentication Code (MAC) or the
 digital signature over the challenge from the server. If
 the <AuthenticationType> is "HS_SECKEY", the
 <ChallengeResponse> consists of an octet followed by the
 MAC. The octet identifies the algorithm used to generate
 the MAC. For example, if the first octet is set to 0x01,
 the MAC is generated by

 MD5_Hash(<SecretKey> + <ServerChallenge> + <SecretKey>)

 where the <SecretKey> is the administrator’s secret key
 referenced by the <KeyHandle> and <KeyIndex>. The
 <ServerChallenge> is the Message Body portion of the
 server’s challenge. If the first octet in the
 <ChallengeResponse> is set to 0x02, the MAC is generated
 using

 SHA-1_Hash(<SecretKey> + <ServerChallenge> + <SecretKey>)

 A more secure approach is to use HMAC [17] for the
 <ChallengeResponse>. The HMAC can be generated using the
 <SecretKey> and <ServerChallenge>. A <ChallengeResponse>
 with its first octet set to 0x11 indicates that the HMAC
 is generated using the MD5 algorithm. Likewise, a
 <ChallengeResponse> with its first octet set to 0x12
 indicates that the HMAC is generated using the SHA-1
 algorithm.

 If the <AuthenticationType> is "HS_PUBKEY", the
 <ChallengeResponse> contains the digital signature over the
 Message Body portion of the server’s challenge. The
 signature is generated in two steps: First, a one-way hash
 value is computed over the blob that is to be signed.
 Second, the hash value is signed using the private key.
 The signature consists of a UTF8-String that specifies the
 digest algorithm used for the signature, followed by the
 signature over the server’s challenge. The <KeyHandle> and

Sun, et al. Informational [Page 31]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <KeyIndex> refers to the administrator’s public key that can
 be used to verify the signature.

 Handle administrators are defined in terms of HS_ADMIN values
 assigned to the handle. Each HS_ADMIN value defines the set of
 privileges granted to the administrator. It also provides the
 reference to the authentication key that can be used to authenticate
 the administrator. The reference can be made directly if the
 <AdminRef> field of the HS_ADMIN value refers to the handle value
 that holds the authentication key. Indirect reference to the
 authentication key can also be made via administrator groups. In
 this case, the <AdminRef> field may refer to a handle value of type
 HS_VLIST. An HS_VLIST value defines an administrator group via a
 list of handle value references, each of which refers to the
 authentication key of a handle administrator.

 For handles with multiple HS_ADMIN values, the server will have to
 check each of those with sufficient privileges to see if its
 <AdminRef> field matches the <KeyHandle> and <KeyIndex>. If no match
 is found, but there are administrator groups defined, the server must
 check if the <KeyHandle> and <KeyIndex> belong to any of the
 administrator groups that have sufficient privileges. An
 administrator group may contain another administrator group as a
 member. Servers must be careful to avoid infinite loops when
 navigating these groups.

 If the <KeyHandle> and <KeyIndex> are not referenced by any of the
 HS_ADMIN values, or the administrator group that has sufficient
 privileges, the server will return an error message with
 <ResponseCode> set to RC_NOT_AUTHORIZED. Otherwise, the server will
 continue to authenticate the client as follows:

 If the <AuthenticationType> is "HS_PUBKEY", the server will retrieve
 the administrator’s public key based on the <KeyHandle> and
 <KeyIndex>. The public key can be used to verify the
 <ChallengeResponse> against the server’s <Challenge>. If the
 <ChallengeResponse> matches the <Challenge>, the server will continue
 to process the original request and return the result. Otherwise,
 the server will return an error message with <ResponseCode> set to
 RC_AUTHENTICATION_FAILED.

 If the <AuthenticationType> is "HS_SECKEY", the server will have to
 send a verification request to the verification server; that is, the
 handle server that manages the handle referenced by the <KeyHandle>.
 The verification request and its response are defined in the
 following sections. The verification server will verify the
 <ChallengeResponse> against the <Challenge> on behalf of the handle
 server.

Sun, et al. Informational [Page 32]

RFC 3652 Handle System Protocol (v2.1) November 2003

3.5.3. Challenge-Response Verification-Request

 The message header of the VERIFICATION_REQUEST must set its <OpCode>
 to OC_VERIFY_CHALLENGE and the <ResponseCode> to 0.

 The message body of the Verification-Request is defined as follows:

 <Message Body of VERIFICATION_REQUEST> ::= <KeyHandle>
 <KeyIndex>
 <Challenge>
 <ChallengeResponse>

 where

 <KeyHandle>
 A UTF8-String that refers to the handle that holds the
 secret key of the administrator.

 <KeyIndex>
 A 4-byte unsigned integer that is the index of the handle
 value that holds the secret key of the administrator.

 <Challenge>
 The message body of the server’s challenge, as described in
 section 3.5.1.

 <ChallengeResponse>
 The <ChallengeResponse> from the client in response to
 the server’s <Challenge>, as defined in section 3.5.2.

 Any Challenge-Response Verification-Request must set its CT bit in
 the message header. This is to ensure that the verification server
 will sign the Verification-Response as specified in the next section.

3.5.4. Challenge-Response Verification-Response

 The Verification-Response tells the requesting handle server whether
 the <ChallengeResponse> matches the <Challenge> in the Verification-
 Request.

 The Message Header of the Verification-Response must set its
 <ResponseCode> to RC_SUCCESS whether or not the <ChallengeResponse>
 matches the <Challenge>. The RD flag in the <OpFlag> field should
 also be set (to 1) since the <RequestDigist> will be mandatory in the
 Message Body.

Sun, et al. Informational [Page 33]

RFC 3652 Handle System Protocol (v2.1) November 2003

 The Message Body of the Verification-Response is defined as follows:

 <Challenge-Response Verification-Response>
 ::= <RequestDigest>
 <VerificationResult>
 where

 <RequestDigest>
 Contains the message digest of the Verification-Request.

 <VerificationResult>
 An octet that is set to 1 if the <ChallengeResponse>
 matches the <Challenge>. Otherwise it must be set to
 0.

 The verification server may return an error with <ResponseCode> set
 to RC_AUTHEN_FAILED if it cannot perform the verification (e.g., the
 <KeyHandle> does not exist, or the <KeyHandle> and <KeyIndex> refer
 to an invalid handle value). When this happens, the server that
 performs the client authentication should relay the same error
 message back to the client.

3.6. Handle Administration

 The Handle System protocol supports a set of handle administration
 functions that include adding, deleting, and modifying handles or
 handle values. Before fulfilling any administration request, the
 server must authenticate the client as the handle administrator that
 is authorized for the administrative operation. Handle
 administration can only be carried out by the primary handle server.

3.6.1. Add Handle Value(s)

 Clients add values to existing handles by sending ADD_VALUE requests
 to the responsible handle server. The Message Header of the
 ADD_VALUE request must set its <OpCode> to OC_ADD_VALUE.

 The Message Body of the ADD_VALUE request is encoded as follows:

 <Message Body of ADD_VALUE Request> ::= <Handle>
 <ValueList>

 where

 <Handle>
 A UTF8-String that specifies the handle.

Sun, et al. Informational [Page 34]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <ValueList>
 A 4-byte unsigned integer followed by a list of handle
 values. The integer indicates the number of handle values
 in the list.

 The server that receives the ADD_VALUE request must first
 authenticate the client as the administrator with the ADD_VALUE
 privilege. Upon successful authentication, the server will proceed
 to add each value in the <ValueList> to the <Handle>. If successful,
 the server will return an RC_SUCCESS message to the client.

 Each ADD_VALUE request must be carried out as a transaction. If
 adding any value in the <ValueList> raises an error, the entire
 operation must be rolled back. For any failed ADD_VALUE request,
 none of the values in the <ValueList> should be added to the
 <Handle>. The server must also send a response to the client that
 explains the error. For example, if a value in the <ValueList> has
 the same index as one of the existing handle values, the server will
 return an error message that has the <ResponseCode> set to
 RC_VALUE_ALREADY_EXISTS.

 ADD_VALUE requests can also be used to add handle administrators.
 This happens if the <ValueList> in the ADD_VALUE request contains any
 HS_ADMIN values. The server must authenticate the client as an
 administrator with the ADD_ADMIN privilege before fulfilling such
 requests.

 An ADD_VALUE request will result in an error if the requested handle
 does not exist. When this happens, the server will return an error
 message with <ResponseCode> set to RC_HANDLE_NOT_EXIST.

3.6.2. Remove Handle Value(s)

 Clients remove existing handle values by sending REMOVE_VALUE
 requests to the responsible handle server. The Message Header of the
 REMOVE_VALUE request must set its <OpCode> to OC_REMOVE_VALUE.

 The Message Body of any REMOVE_VALUE request is encoded as follows:

 <Message Body of REMOVE_VALUE Request> ::= <Handle>
 <IndexList>

 where

 <Handle>
 A UTF8-String that specifies the handle whose value(s) needs
 to be removed.

Sun, et al. Informational [Page 35]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <IndexList>
 A 4-byte unsigned integer followed by a list of handle value
 indexes. Each index refers to a handle value to be removed
 from the <Handle>. The integer specifies the number of
 indexes in the list. Each index is also encoded as a 4-byte
 unsigned integer.

 The server that receives the REMOVE_VALUE request must first
 authenticate the client as the administrator with the REMOVE VALUE
 privilege. Upon successful authentication, the server will proceed
 to remove the handle values specified in the <IndexList> from the
 <Handle>. If successful, the server will return an RC_SUCCESS
 message to the client.

 Each REMOVE_VALUE request must be carried out as a transaction. If
 removing any value specified in the <IndexList> raises an error, the
 entire operation must be rolled back. For any failed REMOVE_VALUE
 request, none of values referenced in the <IndexList> should be
 removed from the <Handle>. The server must also send a response to
 the client that explains the error. For example, attempts to remove
 any handle value with neither PUB_WRITE nor ADMIN_WRITE permission
 will result in an RC_ACCESS_DENIED error. Note that a REMOVE_VALUE
 request asking to remove a non-existing handle value will not be
 treated as an error.

 REMOVE_VALUE requests can also be used to remove handle
 administrators. This happens if any of the indexes in the
 <IndexList> refer to an HS_ADMIN value. Servers must authenticate
 the client as an administrator with the REMOVE_ADMIN privilege before
 fulfilling such requests.

3.6.3. Modify Handle Value(s)

 Clients can make modifications to an existing handle value by sending
 MODIFY_VALUE requests to the responsible handle server. The Message
 Header of the MODIFY_VALUE request must set its <OpCode> to
 OC_MODIFY_VALUE.

 The Message Body of any MODIFY_VALUE request is defined as follows:

 <Message Body of MODIFY_VALUE Response> ::= <Handle>
 <ValueList>

 where

 <Handle>
 A UTF8-String that specifies the handle whose value(s) needs
 to be modified.

Sun, et al. Informational [Page 36]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <ValueList>
 A 4-byte unsigned integer followed by a list of handle
 values. The integer specifies the number of handle values
 in the list. Each value in the <ValueList> specifies a
 handle value that will replace the existing handle value
 with the same index.

 The server that receives the MODIFY_VALUE request must first
 authenticate the client as an administrator with the MODIFY_VALUE
 privilege. Upon successful authentication, the server will proceed
 to replace those handle values listed in the <ValueList>, provided
 each handle value has PUB_WRITE or ADMIN_WRITE permission. If
 successful, the server must notify the client with an RC_SUCCESS
 message.

 Each MODIFY_VALUE request must be carried out as a transaction. If
 replacing any value listed in the <ValueList> raises an error, the
 entire operation must be rolled back. For any failed MODIFY_VALUE
 request, none of values in the <ValueList> should be replaced. The
 server must also return a response to the client that explains the
 error. For example, if a MODIFY_VALUE requests to remove a handle
 value that has neither PUB_WRITE nor ADMIN_WRITE permission, the
 server must return an error message with the <ResponseCode> set to
 RC_ACCESS_DENIED. Any MODIFY_VALUE request to replace non- existing
 handle values is also treated as an error. In this case, the server
 will return an error message with <ResponseCode> set to
 RC_VALUE_NOT_FOUND.

 MODIFY_VALUE requests can also be used to update handle
 administrators. This happens if both the values in the <ValueList>
 and the value to be replaced are HS_ADMIN values. Servers must
 authenticate the client as an administrator with the MODIFY_ADMIN
 privilege before fulfilling such a request. It is an error to
 replace a non-HS_ADMIN value with an HS_ADMIN value. In this case,
 the server will return an error message with <ResponseCode> set to
 RC_VALUE_INVALID.

3.6.4. Create Handle

 Clients can create new handles by sending CREATE_HANDLE requests to
 the responsible handle server. The Message Header of any
 CREATE_HANDLE request must set its <OpCode> to OC_CREATE_HANDLE.

Sun, et al. Informational [Page 37]

RFC 3652 Handle System Protocol (v2.1) November 2003

 The Message Body of any CREATE_HANDLE request is defined as follows:

 <Message Body of CREATE_HANDLE Response> ::= <Handle>
 <ValueList>

 where

 <Handle>
 A UTF8-String that specifies the handle.

 <ValueList>
 A 4-byte unsigned integer followed by a list of handle
 values. The integer indicates the number of handle values
 in the list. The <ValueList> should at least include one
 HS_ADMIN value that defines the handle administrator.

 Only naming authority administrators with the CREATE_HANDLE privilege
 are allowed to create new handles under the naming authority. The
 server that receives a CREATE_HANDLE request must authenticate the
 client as the administrator of the corresponding naming authority
 handle and make certain that the administrator is authorized to
 create handles under the naming authority. This is different from
 the ADD_VALUE request where the server authenticates the client as an
 administrator of the handle. Upon successful authentication, the
 server will proceed to create the new handle and add each value in
 the <ValueList> to the new <Handle>. If successful, the server will
 return an RC_SUCCESS message to the client.

 Each CREATE_HANDLE request must be carried out as a transaction. If
 any part of the CREATE_HANDLE process fails, the entire operation can
 be rolled back. For example, if the server fails to add values in
 the <ValueList> to the new handle, it must return an error message
 without creating the new handle. Any CREATE_HANDLE request that asks
 to create a handle that already exists will be treated as an error.
 In this case, the server will return an error message with the
 <ResponseCode> set to RC_HANDLE_ALREADY_EXIST.

 CREATE_HANDLE requests can also be used to create naming authorities.
 Naming authorities are created as naming authority handles at the
 GHR. Before creating a new naming authority handle, the server must
 authenticate the client as the administrator of the parent naming
 authority. Only administrators with the CREATE_NA privilege are
 allowed to create any sub-naming authority. Root level naming
 authorities may be created by the administrator of the root handle
 "0.NA/0.NA".

Sun, et al. Informational [Page 38]

RFC 3652 Handle System Protocol (v2.1) November 2003

3.6.5. Delete Handle

 Clients delete existing handles by sending DELETE_HANDLE requests to
 the responsible handle server. The Message Header of the
 DELETE_HANDLE request must set its <OpCode> to OC_DELETE_HANDLE.

 The Message Body of any DELETE_HANDLE request is defined as follows:

 <Message Body of DELETE_HANDLE Request> ::= <Handle>

 where

 <Handle>
 A UTF8-String that specifies the handle.

 The server that receives the DELETE_HANDLE request must first
 authenticate the client as the administrator with the DELETE_HANDLE
 privilege. Upon successful authentication, the server will proceed
 to delete the handle along with any handle values assigned to the
 handle. If successful, the server will return an RC_SUCCESS message
 to the client.

 Each DELETE_HANDLE request must be carried out as a transaction. If
 any part of the DELETE_HANDLE process fails, the entire operation
 must be rolled back. For example, if the server fails to remove any
 handle values assigned to the handle (before deleting the handle), it
 must return an error message without deleting the handle. This may
 happen if the handle contains a value that has neither PUB_WRITE nor
 ADMIN_WRITE permission. In this case, the server will return an
 error message with the <ResponseCode> set to RC_PERMISSION_DENIED. A
 DELETE_HANDLE request that asks to delete a non-existing handle will
 also be treated as an error. The server will return an error message
 with the <ResponseCode> set to RC_HANDLE_NOT_EXIST.

 DELETE_HANDLE requests can also be used to delete naming authorities.
 This is achieved by deleting the corresponding naming authority
 handle on the GHR. Before deleting a naming authority handle, the
 server must authenticate the client as the administrator of the
 naming authority handle. Only administrators with the DELETE_NA
 privilege are allowed to delete the naming authority. Root level
 naming authorities may be deleted by the administrator of the root
 handle "0.NA/0.NA".

Sun, et al. Informational [Page 39]

RFC 3652 Handle System Protocol (v2.1) November 2003

3.7. Naming Authority (NA) Administration

 The Handle System manages naming authorities via naming authority
 handles. Naming authority handles are managed by the GHR. Clients
 can change the service information of any naming authority by
 changing the HS_SITE values assigned to the corresponding naming
 authority handle. Creating or deleting naming authorities is done by
 creating or deleting the corresponding naming authority handles.
 Root level naming authorities may be created or deleted by the
 administrator of the root handle "0.NA/0.NA". Non-root-level naming
 authorities may be created by the administrator of its parent naming
 authority.

 For example, the administrator of the naming authority handle
 "0.NA/10" may create the naming authority "10.1000" by sending a
 CREATE_HANDLE request to the GHR to create the naming authority
 handle "0.NA/10.1000". Before fulfilling the request, the server at
 the GHR must authenticate the client as the administrator of the
 parent naming authority, that is, the administrator of the naming
 authority handle "0.NA/10". The server must also make sure that the
 administrator has the NA_CREATE privilege.

 The Handle protocol also allows clients to list handles or sub-naming
 authorities under a naming authority. Details of these operations
 are described in the following sections.

3.7.1. List Handle(s) under a Naming Authority

 Clients send LIST_HANDLE requests to handle servers to get a list of
 handles under a naming authority. The Message Header of the
 LIST_HANDLE request must set its <OpCode> to OC_LIST_HANDLE.

 The Message Body of any LIST_HANDLE request is defined as follows:

 <Message Body of LIST_HANDLE Request> ::= <NA_Handle>

 where

 <NA_Handle>
 A UTF8-String that specifies the naming authority handle.

 To obtain a complete list of the handles, the request must be sent to
 every handle server listed in one of the service sites of the
 responsible handle service. Each server within the service site will
 return its own list of handles under the naming authority. The
 Message Body of a successful LIST_HANDLE response (from each handle
 server) is defined as follows:

Sun, et al. Informational [Page 40]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <Message Body of LIST_HANDLE Response> ::= <Num_Handles>
 <HandleList>
 where

 <Num_Handles>
 Number of handles (managed by the handle server) under the
 naming authority.

 <HandleList>
 A list of UTF8-Strings, each of which identify a handle
 under the naming authority.

 The LIST_HANDLE request may potentially slow down the overall system
 performance. A handle service (or its service site) has the option
 of whether or not to support such request. The server will return an
 RC_OPERATION_DENIED message if LIST_HANDLE is not supported. The
 server that receives a LIST_HANDLE request should authenticate the
 client as a naming authority administrator with the LIST_HANDLE
 privilege before fulfilling the request.

3.7.2. List Sub-Naming Authorities under a Naming Authority

 Clients send LIST_NA requests to handle servers to get a list of
 sub-naming authorities under a naming authority. The Message Header
 of the LIST_NA request must set its <OpCode> to OC_LIST_NA.

 The Message Body of any LIST_NA request is defined as follows:

 <Message Body of LIST_HANDLE Request> ::= <NA_Handle>

 where

 <NA_Handle>
 A UTF8-String that specifies the naming authority handle.

 To obtain a complete list of the sub-naming authorities, the request
 must be sent to every handle server listed in any one of the service
 sites of the GHR. Each server within the service site will return
 its own list of sub-naming authority handles under the given naming
 authority. The Message Body of a successful LIST_NA response (from
 each handle server) is defined as follows:

Sun, et al. Informational [Page 41]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <Message Body of LIST_HANDLE Response> ::= <Num_Handles>
 <HandleList>
 where

 <Num_Handles>
 Number of handles (managed by the handle server) under the
 naming authority.

 <HandleList>
 A list of UTF8-Strings, each of which identifies a sub-
 naming authority user-specified naming authority.

 LIST_NA requests must be sent to servers under the GHR that manages
 all the naming authority handles. The LIST_NA request may
 potentially slow down the overall system performance, especially the
 GHS. A server (or service sites) under the GHR has the option of
 whether or not to support such requests. The server will return an
 RC_OPERATION_DENIED message if LIST_NA is not supported. The server
 that receives a LIST_HANDLE request should authenticate the client as
 a naming authority administrator with the LIST_NA privilege before
 fulfilling the request.

3.8. Session and Session Management

 Sessions are used to allow sharing of authentication information or
 network resources among multiple protocol operations. For example, a
 naming authority administrator may authenticate itself once through
 the session setup, and then register multiple handles under the
 session.

 A client may ask the server to establish a session key and use it for
 subsequent requests. A session key is a secret key that is shared by
 the client and server. It can be used to authenticate or encrypt any
 message exchanged under the session. A session is encrypted if every
 message exchanged within the session is encrypted using the session
 key.

 Sessions may be established as the result of an explicit
 OC_SESSION_SETUP request from a client. A server may also
 automatically setup a session when multiple message exchanges are
 expected to fulfill a request. For example, the server will
 automatically establish a session if it receives a CREATE_HANDLE
 request that requires client authentication.

 Every session is identified by a non-zero Session ID that appears in
 the Message Header. Servers are responsible for generating a unique
 Session ID for each outstanding session. Each session may have a set
 of state information associated with it. The state information may

Sun, et al. Informational [Page 42]

RFC 3652 Handle System Protocol (v2.1) November 2003

 include the session key and the information obtained from client
 authentication, as well as any communication options. Servers and
 clients are responsible for keeping the state information in sync
 until the session is terminated.

 A session may be terminated with an OC_SESSION_TERMINATE request from
 the client. Servers may also terminate a session that has been idle
 for a significant amount of time.

3.8.1. Session Setup Request

 Clients establish a session with a handle server with a SESSION_SETUP
 request. A SESSION_SETUP request can also be used to update any
 state information associated to an existing session. The Message
 Header of the SESSION_SETUP request must have its <OpCode> set to
 OC_SESSION_SETUP and <ResponseCode> to 0.

 The Message Body of any SESSION_SETUP request is defined as follows:

 <SESSION_SETUP Request Message Body> ::= <SessionAttributes>

 where

 <SessionAttributes>
 A 4-byte unsigned integer followed by a list of session
 attributes. The integer indicates the number of session
 attributes in the list. Possible session attributes include
 the <HS_SESSION_IDENTITY>, the <HS_SESSION_TIMEOUT>, and the
 <HS_SESSION_KEY_EXCHANGE>. Each of these attributes is
 defined as follows:

 <HS_SESSION_IDENTITY> ::= <Key>
 <Handle>
 <ValueIndex>
 where

 <Key>
 A UTF-8 string constant "HS_SESSION_IDENTITY".

 <Handle>
 <ValueIndex>
 A UTF-8 string followed by a 4-byte unsigned
 integer that specifies the handle and the handle
 value used for client authentication. It must
 refer to a handle value that contains the public
 key of the client. The public key is used by
 the server to authenticate the client.

Sun, et al. Informational [Page 43]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <HS_SESSION_KEY_EXCHANGE> ::= <Key>
 <KeyExchangeData>
 where

 <Key>
 A UTF-8 string constant "HS_SESSION_KEY_EXCHANGE".

 <KeyExchangeData>
 One of the these tuples: <ClientCipher
 <ClientCipher KeyExchange>,
 <HdlCipher KeyExchange>, or
 <ServerCipher KeyExchange>.
 Each of these tuples is defined as follows:

 <ClientCipher KeyExchange> ::= <Key>
 <PubKey>
 where

 <Key>
 A UTF-8 string constant "CLIENT_CIPHER".

 <PubKey>
 A public key provided by the client and used
 by the server to encrypt the session key.

 <HdlCipher KeyExchange> ::= <Key>
 <ExchangeKeyHdl>
 <ExchangeKeyIndex>
 where

 <Key>
 A UTF-8 string constant "HDL_CIPHER".

 <ExchangeKeyHdl>
 <ExchangeKeyIndex>
 A UTF-8 string followed by a 4-byte unsigned
 integer. The <ExchangeKeyHdl> and
 <ExchangeKeyIndex> refers to a handle value
 used for session key exchange. The handle
 value must contain the public key of the
 client. The public key will be used by the
 server to encrypt the session key before
 sending it to the client.

 <ServerCipher KeyExchange> ::= <Key>

 where

Sun, et al. Informational [Page 44]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <Key>
 A UTF-8 string constant "SERVER_CIPHER". This
 tells the server that the client will be
 responsible for generating the session key. The
 server will have to provide its public key in
 the response message and set the <ResponseCode>
 to RC_SESSION_EXCHANGEKEY. The client can use
 the server’s public key to encrypt the session
 key and send it to the server via a subsequent
 SESSION_EXCHANGEKEY request.

 <DiffieHellman KeyExchange> ::= <Key>
 <DHParams>
 where

 <Key>
 A UTF-8 string constant "DIFFIE_HELLMAN"

 <DHParams>
 The values used as input in the Diffie-
 Hellman algorithm. It consists of three big
 integers of variable length. Each big
 integer is encoded in terms of a 4-byte
 unsigned integer followed by an octet string.
 The octet string contains the big integer
 itself. The 4-byte unsigned integer
 specifies the number of octets of the octet
 string.

 <HS_SESSION_TIMEOUT> ::= <Key>
 <TimeOut>
 where

 <Key>
 A UTF-8 string constant "HS_SESSION_TIMEOUT".

 <TimeOut>
 A 4-byte unsigned integer that specifies the desired
 duration of the session in seconds.

 Note that it should be treated as an error if the same session
 attribute is listed multiple times in the <SessionAttribute> field.
 When this happens, the server should return an error message with
 <ResponseCode> set to RC_PROTOCOL_ERROR.

 A SESSION_SETUP_REQUEST can be used to change session attributes of
 any established session. This happens if the <SessionId> is non-zero

Sun, et al. Informational [Page 45]

RFC 3652 Handle System Protocol (v2.1) November 2003

 and matches one of the established sessions. Care must be taken by
 the server to prevent any unauthorized request from changing the
 session attributes. For example, an encrypted session may only be
 changed into an unencrypted session by a SESSION_SETUP_REQUEST with
 an appropriate MAC in its Message Credential.

3.8.2. Session Setup Response

 The Message Header of the SESSION_SETUP response must set its
 <OpCode> to OC_SESSION_SETUP. The <ResponseCode> of the
 SESSION_SETUP response varies according to the SESSION_SETUP request.
 It must be set to RC_SUCCESS if the SESSION_SETUP request is
 successful and the server does not expect a session key to be
 returned by the client.

 The Message Body of the SESSION_SETUP response is empty unless the
 request is asking for <HS_SESSION_KEY_EXCHANGE>. In this case, the
 Message Body of the SESSION_SETUP response may contain the encrypted
 session key from the server, or the server’s public key, to be used
 for session key exchange. The exact format depends on the content of
 the <HS_SESSION_KEY_EXCHANGE> in the SESSION_SETUP request. If
 <ClientCipher KeyExchange> or <HdlCipher KeyExchange> is given in the
 SESSION_SETUP request, the Message Body of the SESSION_SETUP response
 will contain the encrypted session key from the server and is defined
 as follows:

 <Message Body of SESSION_SETUP Response>
 ::= <RequestDigest>
 <EncryptedSessionKey>
 [<EncryptionAlgorithm>]
 where

 <RequestDigest>
 Message digest of the SESSION_SETUP request is as specified in
 section 2.2.3.

 <EncryptedSessionKey>
 Session key is encrypted using the public key provided in the
 SESSION_SETUP request. The session key is a randomly
 generated octet string from the server. The server will only
 return the <EncryptedSessionKey> if the <KeyExchangeData> in
 the SESSION_SETUP request provides the public key from the
 client.

 <EncryptionAlgorithm>
 (optional) UTF-8 string that identifies the encryption
 algorithm used by the session key.

Sun, et al. Informational [Page 46]

RFC 3652 Handle System Protocol (v2.1) November 2003

 If <ServerCipher KeyExchange> is given in the SESSION_SETUP request,
 the server must provide its public key in the SESSION_SETUP response.
 The public key can be used by the client in a subsequent
 SESSION_EXCHANGEKEY request (defined below) for session key exchange.
 In this case, the Message Header of the SESSION_SETUP response must
 set its <ResponseCode> to RC_SESSION_EXCHANGEKEY. The Message Body
 of the SESSION_SETUP response must include the server’s public key
 and is defined as follows:

 <Message Body of SESSION_SETUP response>
 ::= <RequestDigest>
 <Public Key for Session Key Exchange>

 where

 <RequestDigest>
 Message digest of the SESSION_SETUP request as specified in
 section 2.2.3.

 <Public Key for Session Key Exchange>
 Public key from the server to be used for session key
 exchange. It is encoded in the same format as the <PublicKey>
 record in the HS_SITE value (see section 3.2.2 in [2]).

3.8.3. Session Key Exchange

 If the <ResponseCode> of a SESSION_SETUP response is
 RC_SESSION_EXCHANGEKEY, the client is responsible for generating the
 session key and sending it to the server. In this case, the client
 can generate a session key, encrypt it with the public key provided
 by the server in the SESSION_SETUP response, and send the encrypted
 session key to the server in a SESSION_EXCHANGEKEY request.

 The Message Header of the SESSION_EXCHANGEKEY request must set its
 <OpCode> to OC_SESSION_EXCHANGEKEY and its <ResponseCode> to 0. The
 Message Body of the SESSION_EXCHANGEKEY request is defined as
 follows:

 <Message Body of OC_SESSION_EXCHANGEKEY>
 ::= <Encrypted Session Key>
 [<EncryptionAlgorithm>]

 where

 <EncryptedSessionKey>
 Session key encrypted using the public key provided in the
 SESSION_SETUP response. The session key is a randomly
 generated octet string by the client.

Sun, et al. Informational [Page 47]

RFC 3652 Handle System Protocol (v2.1) November 2003

 <EncryptionAlgorithm>
 (optional) UTF-8 string that identifies the encryption
 algorithm used by the session key.

 During the session key exchange, the server receiving the exchange
 key or session key has the responsibility of ensuring that the key
 meets the security requirements defined in its local policy. If the
 server considers the key being volunable, it must return an error
 message to the client with <ResponseCode> set to
 RC_SESSION_KEY_INVALID.

3.8.4. Session Termination

 Clients can terminate a session with a SESSION_TERMINATE request.
 The Message Header of a SESSION_TERMINATE request must have its
 <OpCode> set to OC_SESSION_TERMINATE and its <ResponseCode> to 0.
 The message body of any SESSION_TERMINATE request must be empty.

 The server must send a SESSION_TERMINATE response to the client after
 the session is terminated. The server should only terminate the
 session after it has finished processing all the requests (under the
 session) that were submitted before the Session Termination request.

 The message header of the SESSION_TERMINATE response must set its
 <OpCode> to OC_SESSION_TERMINATE. A successful SESSION_TERMINATE
 response must have its <ResponseCode> set to RC_SUCCESS, and an empty
 message body.

4. Implementation Guidelines

4.1. Server Implementation

 The optimal structure for any handle server will depend on the host
 operating system. This section only addresses those implementation
 considerations that are common to most handle servers.

 A good server implementation should allow easy configuration or
 fine-tuning. A suggested list of configurable items includes the
 server’s network interface(s) (e.g., IP address, port number, etc.),
 the number of concurrent processes/threads allowed, time-out
 intervals for any TCP connection and/or authentication process, re-
 try policy under UDP connection, policies on whether to support
 recursive service, case-sensitivity for ASCII characters, and
 different levels of transaction logging, etc.

Sun, et al. Informational [Page 48]

RFC 3652 Handle System Protocol (v2.1) November 2003

 All handle server implementations must support all the handle data
 types as defined in the "Handle System Namespace and Service
 Definition" [2]. They should also be able to store handle values of
 any application defined data type.

 A handle server must support multiple concurrent activities, whether
 they are implemented as separate processes or threads in the host’s
 operating system, or multiplexed inside a single name server program.
 A handle server should not block the service of UDP requests while it
 waits for TCP data or other query activities. Similarly, a handle
 server should not attempt to provide recursive service without
 processing such requests in parallel, though it may choose to
 serialize requests from a single client, or to regard identical
 requests from the same client as duplicates.

4.2. Client Implementation

 Clients should be prepared to receive handle values of any data type.
 Clients may choose to implement a callback interface to allow new
 modules or plug-ins to be added to support any application-defined
 data types.

 Clients that follow service referrals or handle aliases must avoid
 falling into an infinite loop. They should not repeatedly contact
 the same server for the same request with the same target entry. A
 client may choose to use a counter that is incremented each time it
 follows a service referral or handle alias. There should be a
 configurable upper limit to the counter to control the levels of
 service referrals or handle aliases followed by the client.

 Clients that provide some caching can expect much better performance
 than those that do not. Client implementations should always
 consider caching the service information associated with a naming
 authority. This will reduce the number of roundtrips for subsequent
 handle requests under the same naming authority.

5. Security Considerations

 The overall Handle System security considerations are discussed in
 "Handle System Overview" [1]; that discussion applies equally to this
 document. Security considerations regarding the Handle System data
 model and service model are discussed in "Handle System Namespace and
 Service Definition" [2].

Sun, et al. Informational [Page 49]

RFC 3652 Handle System Protocol (v2.1) November 2003

 For efficiency, the Handle protocol includes a simple challenge-
 response authentication protocol for basic client authentication.
 Handle servers are free to provide additional authentication
 mechanisms (e.g., SASL) as needed. Details of this will be discussed
 in a separate document.

 Data integrity under the Handle protocol is achieved via the server’s
 digital signature. Care must be taken to protect the server’s
 private key from any impersonation attack. Any change to the
 server’s public key pair must be registered (in terms of service
 information) with the GHR.

6. Acknowledgements

 This work is derived from the earlier versions of the Handle System
 implementation. The overall digital object architecture, including
 the Handle System, was described in a paper by Robert Kahn and Robert
 Wilensky [22] in 1995. Development continued at CNRI as part of the
 Computer Science Technical Reports (CSTR) project, funded by the
 Defense Advanced Projects Agency (DARPA) under Grant Number MDA-972-
 92-J-1029 and MDA-972-99-1-0018. Design ideas are based on those
 discussed within the Handle System development team, including David
 Ely, Charles Orth, Allison Yu, Sean Reilly, Jane Euler, Catherine
 Rey, Stephanie Nguyen, Jason Petrone, and Helen She. Their
 contributions to this work are gratefully acknowledged.

 The authors also thank Russ Housley (housley@vigilsec.com), Ted
 Hardie (hardie@qualcomm.com), and Mark Baugher (mbaugher@cisco.com)
 for their extensive review and comments, as well as recommendations
 received from other members of the IETF/IRTF community.

7. Informative References

 [1] Sun, S. and L. Lannom, "Handle System Overview", RFC 3650,
 November 2003.

 [2] Sun, S., Reilly, S. and L. Lannom, "Handle System Namespace and
 Service Definition", RFC 3651, November 2003.

 [3] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
 2279, January 1998.

 [4] A. Freier, P. Karlton, P. Kocher "The SSL Protocol Version 3.0"

 [5] RSA Laboratories, "Public-Key Cryptography Standard PKCS#7"
 http://www.rsasecurity.com/rsalabs/pkcs/

Sun, et al. Informational [Page 50]

RFC 3652 Handle System Protocol (v2.1) November 2003

 [6] U.S. Federal Information Processing Standard: Digital Signature
 Standard.

 [7] Housley, R., "Cryptographic Message Syntax (CMS) Algorithms",
 RFC 3370, August 2002.

 [8] Braden, R., "FTP Data Compression", RFC 468, March 1973.

 [9] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
 1992.

 [10] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

 [11] D. Cohen, "On Holy Wars and a Plea for Peace", Internet
 Experiment, Note IEN 137, 1 April 1980.

 [12] Balakrishnan, H. and S. Seshan, "The Congestion Manager", RFC
 3124, June 2001.

 [13] R. Kahn, R. Wilensky, "A Framework for Distributed Digital
 Object Services, May 1995, http://www.cnri.reston.va.us/k-w.html

 [14] Polk, W., Housley, R. and L. Bassham, "Algorithms and
 Identifiers for the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile", RFC
 3279, April 2002.

 [15] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet X.509
 Public Key Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 3280, April 2002.

 [16] M. Bellare and P. Rogaway. The Exact Security of Digital
 Signatures - How to Sign with RSA and Rabin. In Advances in
 Cryptology-Eurocrypt ’96, pp.399-416, Springer-Verlag, 1996.

 [17] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [18] R. Kahn, R. Wilensky, "A Framework for Distributed Digital
 Object Services, May 1995, http://www.cnri.reston.va.us/k-w.html

Sun, et al. Informational [Page 51]

RFC 3652 Handle System Protocol (v2.1) November 2003

8. Authors’ Addresses

 Sam X. Sun
 Corporation for National Research Initiatives (CNRI)
 1895 Preston White Dr., Suite 100
 Reston, VA 20191

 Phone: 703-262-5316
 EMail: ssun@cnri.reston.va.us

 Sean Reilly
 Corporation for National Research Initiatives (CNRI)
 1895 Preston White Dr., Suite 100
 Reston, VA 20191

 Phone: 703-620-8990
 EMail: sreilly@cnri.reston.va.us

 Larry Lannom
 Corporation for National Research Initiatives (CNRI)
 1895 Preston White Dr., Suite 100
 Reston, VA 20191

 Phone: 703-262-5307
 EMail: llannom@cnri.reston.va.us

 Jason Petrone
 Corporation for National Research Initiatives (CNRI)
 1895 Preston White Dr., Suite 100
 Reston, VA 20191

 Phone: 703-262-5340
 EMail: jpetrone@cnri.reston.va.us

Sun, et al. Informational [Page 52]

RFC 3652 Handle System Protocol (v2.1) November 2003

9. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Sun, et al. Informational [Page 53]

