Network Working Group J. Rosenberg
Request for Comments: 3261 dynamicsoft
Obsoletes: 2543 H. Schulzrinne
Category: Standards Track Columbia U.
G. Camarillo
Ericsson
A. Johnston
WorldCom
J. Peterson
Neustar
R. Sparks
dynamicsoft
M. Handley
ICIR
E. Schooler
AT&T
June 2002

SIP: Session Initiation Protocol
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract

This document describes Session Initiation Protocol (SIP), an
application-layer control (signaling) protocol for creating,
modifying, and terminating sessions with one or more participants.
These sessions include Internet telephone calls, multimedia
distribution, and multimedia conferences.

SIP invitations used to create sessions carry session descriptions

that allow participants to agree on a set of compatible media types.
SIP makes use of elements called proxy servers to help route requests
to the user’s current location, authenticate and authorize users for
services, implement provider call-routing policies, and provide

features to users. SIP also provides a registration function that

allows users to upload their current locations for use by proxy

servers. SIP runs on top of several different transport protocols.

Rosenberg, et. al. Standards Track [Page 1]

RFC 3261 SIP: Session Initiation Protocol June 2002

Table of Contents

1 Introductioncccccveiiiiiieeees 8

2 Overview of SIP Functionalityccccceee.... 9

3 Terminologycccccceeeveeeeieiiniiiiiieeeen, 10

4 Overview of Operationccccceveeeeeeiinnnnns 10

5 Structure of the Protocolccccevveene 18

6 Definitionsccoovvviiciiiieeee e, 20

7 SIP MESSAJES ...ovvvvevieiiiiiiiieieieeee e 26

7.1 REQUESLES ... 27

7.2 RESPONSES ... 28

7.3 Header Fieldsccccoocvveniiiiiiiiciieee 29

7.3.1 Header Field Formatccccoovvevnneennnnn. 30
7.3.2 Header Field Classificationc..c.c..e.... 32
7.3.3 Compact FOrmMccccccveeeiniiiiiniineeee, 32

7.4 Bodiesoooiiiiiiiiiii 33

7.4.1 Message Body TYpeccoovvviiiiiiiiieennnnnnn, 33
7.4.2 Message Body Lengthccccvvvvveeeenennnnn. 33
7.5 Framing SIP MeSSagescccccvvvvvvveeeeeennn, 34
8 General User Agent Behaviorcccceee..ee. 34
8.1 UAC Behaviorcccuvveeeeieieeeiieeiiee 35
8.1.1 Generating the Requestooecvvvvieenenn. 35
8.1.1.1 Request-URIouuveeiiiiiiiiiiiieeeee, 35
8.1.1.2 TO wiiiiiiiieie et 36

8.1.1.3 FrOM .oooviiiiiiiiee e 37

8.1.1.4 Call-ID ..ccvvvvieieeeieee e 37

8.1.1.5 CSEQ -cveeirreeiiiieiiiie e 38
8.1.1.6 Max-Forwardscccccurrriieeeiieaenenins 38
8.1.1.7 Vil coooiiiiiiieiie et 39

8.1.1.8 Contactcccvvrviviieiiei i, 40

8.1.1.9 Supported and Requireccccvvvvveveeernnn. 40
8.1.1.10 Additional Message Componentscc.ee.... 41
8.1.2 Sending the Requestcccceeeirviireennnnne 41
8.1.3 Processing ReSpoNSescccvvveeeeeeeeaennn. 42
8.1.3.1 Transaction Layer Errorsccccoovvuvvnnnnen. 42
8.1.3.2 Unrecognized ReSPONSEScccvvvvveeeeeeennn. 42
8.1.3.3 ViaS oo 43

8.1.3.4 Processing 3xX RESPONSEScccevvvvereernnnnn 43
8.1.3.5 Processing 4xXX RESPONSEScccevvvvereennnnnn 45
8.2 UAS Behaviorccccooeeiiiiiiiiiiiiieeeeeee, 46
8.2.1 Method Inspectionccccvviiiiieeieeennnn. 46
8.2.2 Header Inspectionccccceeeeeeiieiinnnnnnen, 46
8.2.2.1 Toand Request-URIcccccvveverreeeeiiinnnnns 46
8.2.2.2 Merged ReqUESLSccuvveveiiiiiiiieiiiieen, 47
8.2.2.3 ReqUIreccceviiiiieiiiiee e a7

8.2.3 Content Processingcccoeecvvvivieeenennnn. 48
8.2.4 Applying EXteNnsioNnsocccvvviiiieeeeennn. 49
8.2.5 Processing the Requestccccvvvvveeenn. 49

Rosenberg, et. al. Standards Track [Page 2]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.2.6 Generating the Responseccccccceeevvvvinnnnns 49
8.2.6.1 Sending a Provisional Responseccc....... 49
8.2.6.2 Headers and Tagscccccovvvrvrerinireeeennnnn 50

8.2.7 Stateless UAS Behaviorcccccceeeeiiiiinnnns 50

8.3 Redirect Serversccoeovveeiiiienceenn, 51

9 Canceling a Requestccccccevveeeeeiiiiicnnns 53

9.1 Client Behaviorcccccocvvevieiicnenennen, 53

9.2 Server Behaviorccccccvvvvviieneeeiininns 55

10 Registrationsccccoviveeiiiiieneen 56

10.1 OVEIVIBW ..oovviiiiiiiiiiiiiiieieeee e 56

10.2 Constructing the REGISTER Request 57
10.2.1 Adding Bindingscccccvveeieieeeeeiiins 59
10.2.1.1 Setting the Expiration Interval of Contact Addresses 60
10.2.1.2 Preferences among Contact Addresses 61
10.2.2 Removing Bindingscccoceveeiniineennnnn. 61
10.2.3 Fetching BindinNgscccccceeeiiiiiiiiiiiiinen. 61

10.2.4 Refreshing Bindingsccccooviiiiiiiiennnnn. 61
10.2.5 Setting the Internal Clockcccevveeeeeenn. 62
10.2.6 Discovering a Registrarccccccoeeeuvvnneen 62
10.2.7 Transmitting a Requestccccceeevviiineenn. 62
10.2.8 Error RESPONSESccevvriveiiiieeeeeeiieniiinns 63

10.3 Processing REGISTER Requestscccuuvveeee. 63
11 Querying for Capabilitiesccccevveeeee. 66

111 Construction of OPTIONS Request 67
11.2 Processing of OPTIONS Requestcccueeeee 68
12 Dialogs ...coovveeeeiiiiiieee e 69

12.1 Creation of a Dialogccccoeevvveeeiiiinennen, 70

12.1.1 UAS behaviorccccccciiiiiiiiiiiiiiieeee, 70

12.1.2 UAC Behaviorccccoovvieieiiiiiineeeinn, 71

12.2 Requests within a Dialogccccccceeevinnnis 72
12.2.1 UAC Behaviorcccccovvivinneeiiiieenneees 73
12.2.1.1 Generating the Requestccccceevvivveeeeenns 73
12.2.1.2 Processing the ReSpoNSeSccoccvvveeernnnnn. 75
12.2.2 UAS Behaviorccccceeeeeiieiiniiiiiiiie 76

12.3 Termination of a Dialogccccvvvieeeenen. 77

13 Initiating a SessioNncccccvveeveeeieiiiinnns 77

13.1 OVEIVIEW ... 77

13.2 UAC Processingcccceeevvveeeeninineeeesninn. 78

13.2.1 Creating the Initial INVITEccccceeennnen. 78
13.2.2 Processing INVITE ReSpoNnsesccccuvvveeeen. 81
13.2.2.1 1IXX RESPONSESeuuiiiiiiiiiiiieeeeeeeeeeeeeeeeees 81
13.2.2.2 3XX RESPONSESovivvviiiiiiieeiiiiiiie e 81
13.2.2.3 4xx, 5xx and 6XX RESPONSEScceeevvvvrinnnnnns 81
13.2.2.4 2XX RESPONSESevvrviviiieeeeiiiiiirireeeeen 82

13.3 UAS ProCeSSING ..cccovvvrreeeiiiiiieeeiiiieeeeens 83

13.3.1 Processing of the INVITEccccccceiiiiinnnne 83
13.3.1.1 Progresscocoeeeeeeeeeieieiiiieeeeeeeeeieieiene 84

13.3.1.2 The INVITE is Redirectedc.cocvevvveennne 84

Rosenberg, et. al. Standards Track [Page 3]

RFC 3261 SIP: Session Initiation Protocol June 2002

13.3.1.3 The INVITE is Rejectedcccccvvvvveveeeeennnn. 85
13.3.1.4 The INVITE is Acceptedcccceevviiierernnnne 85

14 Modifying an Existing Sessioncccceee... 86

14.1 UAC Behaviorocccuviiiiiiiiiiaeiiis 86

14.2 UAS Behaviorccccoeiiiiiiiiiiiee, 88

15 Terminating a Sessioncccccvvveeeeeeeenn, 89

15.1 Terminating a Session with a BYE Request 90
15.1.1 UAC Behaviorccccceeeeviviciiiiieieieaeeeen 90

15.1.2 UAS Behaviorcccccuveeeeiieeeeeiiiiiene 91

16 Proxy Behaviorccccccceiiiiiiiiiiiinnen. 91

16.1 OVEIVIBW ..cooviiiiiiiiiiiiiieieeeeee e 91

16.2 Stateful ProXyccooeevvvvieeeieeee e 92

16.3 Request Validationcccccceeevvvvinninnnee. 94

16.4 Route Information Preprocessingcccceee.n. 96
16.5 Determining Request Targetsccccceeevnnee. 97

16.6 Request Forwardingcccccuvvieeeeenneennnn. 99

16.7 Response Processingcccvvveeeeeeeeeennnnnne 107

16.8 Processing Timer Ccccocvvvveeeeeeeeeenenn, 114

16.9 Handling Transport Errorsccccccvveeeeeennn. 115

16.10 CANCEL Processingccccoecuveeeerniiieeennnnnn 115

16.11 Stateless ProXyccccceeeivvieeeeniiineeeens 116

16.12 Summary of Proxy Route Processing 118
16.12.1 EXaMPIES ...ovviiiiiiiiieeiiiiieee e 118

16.12.1.1 Basic SIP Trapezoidcccccvvvvvveeeennnn. 118
16.12.1.2 Traversing a Strict-Routing Proxy 120
16.12.1.3 Rewriting Record-Route Header Field Values 121
17 Transactionsooooeeceviiiieeiieeeeee s 122

171 Client Transactionccccccceeviiiicinnnnnn. 124

17.1.1 INVITE Client Transactionccccccceeeeennn. 125
17.1.1.1 Overview of INVITE Transaction 125
17.1.1.2 Formal Descriptionc.cccovevvvvvveenennnnn. 125
17.1.1.3 Construction of the ACK Request 129
17.1.2 Non-INVITE Client Transaction 130
17.1.2.1 Overview of the non-INVITE Transaction 130
17.1.2.2 Formal Descriptioncoooveuvviiieeeeennn. 131

17.1.3 Matching Responses to Client Transactions 132
17.1.4 Handling Transport Errorsccccccoeeevvenne 133

17.2 Server Transactioncccccceveeeeeeviniicnnns 134

17.2.1 INVITE Server Transactioncccccuveeeeen. 134
17.2.2 Non-INVITE Server Transaction 137
17.2.3 Matching Requests to Server Transactions 138
17.2.4 Handling Transport Errorsccccceeeuves 141

18 TranNSPOIt ..coevvveeeeeeeeeeeeiere e 141

18.1 ClENtS v 142

18.1.1 Sending REqUESLSccccevvvieeeeriiiiieeeens 142

18.1.2 Receiving RESPONSESccccuvvviiiiiieaaaeaeenn. 144

18.2 SEIVEIS ..o 145

18.2.1 Receiving Requestscccccceeevevvccvvvrnnnnnn. 145

Rosenberg, et. al. Standards Track [Page 4]

RFC 3261 SIP: Session Initiation Protocol June 2002

18.2.2 Sending RESPONSEScccovvvvvvvriiiiiieeeeeenn, 146
18.3 Framingccooocveeeeiiiiiiee e, 147

18.4 Error Handlingccccceveviiiiieiniiineen. 147

19 Common Message Componentsccoeeeeeeeeeeee. 147
191 SIP and SIPS Uniform Resource Indicators 148
19.1.1 SIP and SIPS URI Componentsccccccceeeeeunns 148
19.1.2 Character Escaping Requirementsccccceee.... 152
19.1.3 Example SIP and SIPS URIScccovvvieeennns 153
19.1.4 URI Comparisoncccccovevvereeiniieeeennne 153
19.1.5 Forming Requests from a URI 156
19.1.6 Relating SIP URIs and tel URLS 157
19.2 (O] 0]110] g I IF-To |- TR 158

19.3 TAGS .eeeieririeieee e 159

20 Header Fieldsccccoccvvveeeeiiiiiiine, 159

20.1 ACCEPL .o 161

20.2 Accept-Encodingcceeeeiiiiiiiiinii 163

20.3 Accept-Languageccccoeeiiiiiiiiiiiiininnns 164

204 Alert-Info ... 164

20.5 AlIOW i 165

20.6 Authentication-Infoccccecvveeeeiinns 165

20.7 Authorizationcccccceeveviiiiiiiiieennn. 165

20.8 Call-ID ..o 166

20.9 Call-INfo ..ooeeiiie 166

20.10 Contactccccvvvviiiiieieen 167

20.11 Content-Dispositionccccvvvvveeereennnn. 168
20.12 Content-Encodingccoocvvereiiiiiiineennnnnn. 169
20.13 Content-Languageccccccoervvrvvrrvreeeeenn 169
20.14 Content-Lengthcccccceeiiiiiiiiiiiiiinnen. 169

20.15 Content-TYPE ...ouvvvvrieiiiiiiiiieieie e 170

20.16 CSEQ .vveerrrieiirieiiie e 170

20.17 DAl ..ccoocieieeiieee e 170

20.18 Error-Info ..occoeeeiiiiccieeeeee e 171

20.19 EXPIreS .oooieeeeiiiiieeee e 171

20.20 FrOM cooceiiiiiiceieee e 172

20.21 In-RePIy-TO oot 172

20.22 Max-Forwardsccccoeverieieniireniineennnn 173
20.23 MIN-EXPIr€Svvvvveeeeeeeiieiiiiiniieineeeaeaen 173

20.24 MIME-VErSIONccvvviriieeeeeeiiisiineneneeens 173

20.25 Organizationccceveveeeeeiiiieeeennnnn 174

20.26 PrIOMLY .ooeveiieeiiiiiiiiiieeeeeee e 174

20.27 Proxy-Authenticateoccecviviiiieenennnn. 174
20.28 Proxy-Authorizationcccccccvvveeeeeennn. 175
20.29 Proxy-Requirecccceeevvvvveereereeeninnnnns 175

20.30 RecOrd-ROULEccevveeeeeiiiiiiiiiiieeeeeenn, 175

20.31 RePIY-TO .eovveeiiiiiiiee e 176

20.32 REQUIIE ...ueeeeeeieeeeeiieiiiieeee e 176

20.33 Retry-After ..o, 176

20.34 ROULE ...coveveiiiieeieee e 177

Rosenberg, et. al. Standards Track [Page 5]

RFC 3261 SIP: Session Initiation Protocol June 2002

20.35 SEeIVEl .o 177

20.36 SUDJECE ..ovvvieiiiiiiiiee e 177

20.37 SUPPOIEdcoviviiiieiiieee e 178

20.38 TIiMeStampccccuveeeeeeieeeiiiiiiiiiieeeeeennn 178

20.39 TO ciiiieeeee e 178

20.40 UNSUpportedooecevviiiiieeee e 179

20.41 USEr-Agentcccceceeeininieieeeeeeeeeeeeeeneeeens 179

2042 Vi@ oo 179

20.43 WarNiNgcceeeeeiiiiieeeeiieee e 180

20.44 WWW-Authenticatecccceeeeeeeeeeeinniiinns 182

21 Response Codesccccuvvveeeeeiieeeneiins 182

21.1 Provisional IXXccccunveerniniennnenennne 182

220 I T A 0 10 B I Y/ o T 183

21.1.2 180 RINGING evvveieiiiiiiiee e 183

21.1.3 181 Call Is Being Forwardedc.cccnee. 183
21.1.4 182 QUEUEdeeeeiieiiiiiieiiee e 183

21.1.5 183 Session Progressccccceeeeveveivveineeeenn. 183
21.2 SUCCESSTUl 2XX v 183

2121 200 OK ..oveiiiiiieiteee e 183

21.3 Redirection 3XXcccccvvvveviiereeeeeeiiiiiinnns 184

21.3.1 300 Multiple ChoicCesccccoevvvvreriurnennn. 184
21.3.2 301 Moved Permanentlyccccoevuuvinnnen. 184
21.3.3 302 Moved Temporarilyccccuvvviieeenennnnn. 184
21.3.4 305 USE PrOXY ..cccvveevireieireeeniee e 185
21.3.5 380 Alternative Serviceccccoeveverineenns 185
21.4 Request Failure 4XXcccevvvvveeeniinienenn. 185
21.41 400 Bad ReqUESLcccovcuvvereiiiiieeeeie 185
21.4.2 401 Unauthorizedcooooiiiiiiiieennnnnn. 185
21.43 402 Payment Requiredccccuvvveveeenennnn. 186
21.4.4 403 Forbiddencccccvovieiiiiiniiiennen, 186
2145 404 Not Foundccccoveveiimeeninineneees 186
21.4.6 405 Method Not Allowedcccveeevrenneen. 186
21.4.7 406 Not Acceptableccccovvvvvvieininnenen, 186
21.4.8 407 Proxy Authentication Required 186
21.49 408 Request TIMEOULevvveeeeeeeernniians 186
21410 410 GONE ...ooviiiiieiieeiee e 187
21.4.11 413 Request Entity Too Largeccccccveveeennn. 187
21.4.12 414 Request-URI TOO LONGcceeevvvviiiiirinnnn, 187
21.4.13 415 Unsupported Media TYpeccceveernunnnenn. 187
21.4.14 416 Unsupported URI Schemecccveeeee. 187
21.4.15 420 Bad EXtENSIONovevviiieieeiiiieeee e 187
21.4.16 421 Extension Requiredccccccvvveeeeeninnnnns 188
21.4.17 423 Interval Too Briefccccocvvevinvennnnnn, 188
21.4.18 480 Temporarily Unavailable 188
21.4.19 481 Call/Transaction Does Not Exist 188
21.4.20 482 Loop Detectedooocvvvivieeeiiineannnn. 188
21.4.21 483 Too Many HOPSceevvvmmiiiiiieieieeennn. 189
21.4.22 484 Address Incompletecccovvvveveeeeeennn. 189

Rosenberg, et. al. Standards Track [Page 6]

RFC 3261 SIP: Session Initiation Protocol June 2002

21.4.23 485 AmMDbIigUOUScooovviiiiiiieeeeee e 189

21.4.24 486 Busy Herecccoceveviiiiiiiiiiiieeeeee, 189

21.4.25 487 Request Terminatedccceeveerivnnenn. 190

21.4.26 488 Not Acceptable Herecccvvveeeeeeen. 190

21.4.27 491 Request Pendingcccccccoevviiiiinnnenn. 190

21.4.28 493 Undecipherableccccccoevviivnnnnnn.n. 190

215 Server Failure 5XXcooccvvveeviiiieneneninen, 190

21.5.1 500 Server Internal Efrorcccccceeevveveennnns 190

21.5.2 501 Not Implementedc.ccoveeeriiiieeeenns 191

21.5.3 502 Bad Gatewaycccceeeeeeeeeiniinniennnen 191

21.5.4 503 Service Unavailablec.cccccceei. 191

2155 504 Server TIMe-0OULtcceeveeviveeeeeriinnnnn. 191

21.5.6 505 Version Not Supportedccccceeeveriinnns 192

21.5.7 513 Message Too Largecccccceevvvvinnrnnnnnn. 192

21.6 Global Failures 6XXcccccuvvveeeeieneeennn. 192

21.6.1 600 Busy Everywhereccccccceeveeiiiininnnns 192

21.6.2 603 DeCliNgoccvvveveeiiiiiiee e 192

21.6.3 604 Does Not Exist Anywhereccccccvveeeeennnn. 192

21.6.4 606 Not Acceptablecccccvvvveeieenneeenn. 192

22 Usage of HTTP Authentication 193

221 Frameworkcccccoeeeiiiiiiiiiiieeeeeeen, 193

22.2 User-to-User Authenticationcccceee.. 195

22.3 Proxy-to-User Authentication 197

22.4 The Digest Authentication Scheme 199

23 SIMIMEoooiiiiiiiieee e 201

23.1 S/MIME Certificatescccocvvvvveeeeeeiinnnnns 201

23.2 S/MIME Key Exchangec.cccoeeeeiiniieeeenne 202

23.3 Securing MIME bodiesccccoon. 205

23.4 SIP Header Privacy and Integrity using S/IMIME:
Tunneling SIP ..., 207

23.4.1 Integrity and Confidentiality Properties of SIP
Headerscccocvveeeeeiieeeeeceee e 207

23.4.1.1 INEGIILY .evevveeieeeeiiieeee e 207

23.4.1.2 Confidentialitycccovviiieeriirennnns 208

23.4.2 Tunneling Integrity and Authentication 209

23.4.3 Tunneling Encryptionccccccvvvvveneennn. 211

24 EXamplesccooovviiiiiiiie s 213

24.1 Registrationccccoccveviiiiiiieiinniien, 213

24.2 SesSioN SetUp ..ooeeveeeeiiiieeee e 214

25 Augmented BNF for the SIP Protocol 219

25.1 Basic RUleS ... 219

26 Security Considerations: Threat Model and Security
Usage Recommendationsccccccvveeeeennnnne 232

26.1 Attacks and Threat Modelscccccceeeiinnns 233

26.1.1 Registration Hijackingc.cccccoueveernnnnn. 233

26.1.2 Impersonating a Servercccccceeeeeeeiinnns 234

26.1.3 Tampering with Message Bodiescccoennee 235

26.1.4 Tearing DOwn SeSSIONSccvvvveeeeiiiiinnnnen, 235

Rosenberg, et. al. Standards Track [Page 7]

RFC 3261 SIP: Session Initiation Protocol June 2002

26.1.5 Denial of Service and Amplification 236
26.2 Security Mechanismscocccceeevviiieeeenne 237
26.2.1 Transport and Network Layer Security 238
26.2.2 SIPS URI Schemecccccoccvveeeiiciiieeeeee, 239
26.2.3 HTTP Authenticationcccccoecvvvrernnnnnn 240
26.2.4 SIMIMEcocovviiiiiiiiiiie e 240

26.3 Implementing Security Mechanisms 241
26.3.1 Requirements for Implementers of SIP 241
26.3.2 Security SOIULIONScoovvvveeiiiiiiieeee, 242
26.3.2.1 Registrationcccccvveeeeiiieieieiiniiiens 242

26.3.2.2 Interdomain Requestscccuvvivieeeeennnn. 243
26.3.2.3 Peer-to-Peer Requestsccccvvviiveeeeeennnn, 245
26.3.2.4 DOS Protectioncccoceverereeiriererinnnens 246

26.4 Limitationsccoovvecvvviiiieiiee e 247

26.4.1 HTTP Digestccccoeeiiiieiiiieeiiee e 247

26.4.2 SIMIMEcccvvviiiiiiiiee et 248

26.4.3 TLS i 249

26.4.4 SIPSURIS ...occvvviieiiiiiie e 249

26.5 PriVacy ..ccoooeeeiiiiiiiieeeeeeee e 251

27 IANA Considerationscccccvvvvveereennn. 252

27.1 OPLION TAGS -vvveeeeiiiiieeeiiiieeeeeeiiieeee s 252

27.2 Warn-Codesccoeveeeeeeieeeiiniiiiiiiee, 252

27.3 Header Field Namesc.cccoceeiiiiiieecnns 253

27.4 Method and Response Codesccccvvvveneen. 253
27.5 The "message/sip" MIME type.cccccceeevviinnnns 254
27.6 New Content-Disposition Parameter Registrations 255
28 Changes From RFC 2543coccvvvieiiiinenn. 255
28.1 Major Functional Changesccccccccoeviunnne 255
28.2 Minor Functional Changesccccccccoevvinne 260

29 Normative Referencescccccocvvvvieeennnen. 261

30 Informative Referencescccocevvvvennnen. 262

A Table of Timer Valuescccccovvvveveeeenn. 265
Acknowledgmentsccoccveeeeiiiiiieee e, 266
AUuthors’ AddreSSeseveeeviiieeiiiiiiiiiieeeeee e 267

Full Copyright Statementcccccceeeiiiiiiiiiiinneen. 269

1 Introduction

There are many applications of the Internet that require the creation
and management of a session, where a session is considered an
exchange of data between an association of participants. The
implementation of these applications is complicated by the practices

of participants: users may move between endpoints, they may be
addressable by multiple names, and they may communicate in several
different media - sometimes simultaneously. Numerous protocols have
been authored that carry various forms of real-time multimedia

session data such as voice, video, or text messages. The Session
Initiation Protocol (SIP) works in concert with these protocols by

Rosenberg, et. al. Standards Track [Page 8]

RFC 3261 SIP: Session Initiation Protocol June 2002

enabling Internet endpoints (called user agents) to discover one
another and to agree on a characterization of a session they would
like to share. For locating prospective session participants, and

for other functions, SIP enables the creation of an infrastructure of
network hosts (called proxy servers) to which user agents can send
registrations, invitations to sessions, and other requests. SIP is

an agile, general-purpose tool for creating, modifying, and
terminating sessions that works independently of underlying transport
protocols and without dependency on the type of session that is being
established.

2 Overview of SIP Functionality

SIP is an application-layer control protocol that can establish,

modify, and terminate multimedia sessions (conferences) such as
Internet telephony calls. SIP can also invite participants to

already existing sessions, such as multicast conferences. Media can
be added to (and removed from) an existing session. SIP
transparently supports name mapping and redirection services, which
supports personal mobility [27] - users can maintain a single
externally visible identifier regardless of their network location.

SIP supports five facets of establishing and terminating multimedia
communications:

User location: determination of the end system to be used for
communication;

User availability: determination of the willingness of the called
party to engage in communications;

User capabilities: determination of the media and media parameters
to be used,;

Session setup: "ringing”, establishment of session parameters at
both called and calling party;

Session management: including transfer and termination of
sessions, modifying session parameters, and invoking
services.

SIP is not a vertically integrated communications system. SIP is

rather a component that can be used with other IETF protocols to

build a complete multimedia architecture. Typically, these

architectures will include protocols such as the Real-time Transport
Protocol (RTP) (RFC 1889 [28]) for transporting real-time data and
providing QoS feedback, the Real-Time streaming protocol (RTSP) (RFC
2326 [29]) for controlling delivery of streaming media, the Media

Rosenberg, et. al. Standards Track [Page 9]

RFC 3261 SIP: Session Initiation Protocol June 2002

Gateway Control Protocol (MEGACO) (RFC 3015 [30]) for controlling
gateways to the Public Switched Telephone Network (PSTN), and the
Session Description Protocol (SDP) (RFC 2327 [1]) for describing
multimedia sessions. Therefore, SIP should be used in conjunction
with other protocols in order to provide complete services to the
users. However, the basic functionality and operation of SIP does
not depend on any of these protocols.

SIP does not provide services. Rather, SIP provides primitives that
can be used to implement different services. For example, SIP can
locate a user and deliver an opaque object to his current location.

If this primitive is used to deliver a session description written in
SDP, for instance, the endpoints can agree on the parameters of a
session. If the same primitive is used to deliver a photo of the
caller as well as the session description, a "caller ID" service can
be easily implemented. As this example shows, a single primitive is
typically used to provide several different services.

SIP does not offer conference control services such as floor control

or voting and does not prescribe how a conference is to be managed.
SIP can be used to initiate a session that uses some other conference
control protocol. Since SIP messages and the sessions they establish
can pass through entirely different networks, SIP cannot, and does
not, provide any kind of network resource reservation capabilities.

The nature of the services provided make security particularly
important. To that end, SIP provides a suite of security services,
which include denial-of-service prevention, authentication (both user
to user and proxy to user), integrity protection, and encryption and
privacy services.

SIP works with both IPv4 and IPv6.
3 Terminology
In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
described in BCP 14, RFC 2119 [2] and indicate requirement levels for
compliant SIP implementations.
4 Overview of Operation
This section introduces the basic operations of SIP using simple

examples. This section is tutorial in nature and does not contain
any normative statements.

Rosenberg, et. al. Standards Track [Page 10]

RFC 3261 SIP: Session Initiation Protocol June 2002

The first example shows the basic functions of SIP: location of an

end point, signal of a desire to communicate, negotiation of session
parameters to establish the session, and teardown of the session once
established.

Figure 1 shows a typical example of a SIP message exchange between
two users, Alice and Bob. (Each message is labeled with the letter

"F" and a number for reference by the text.) In this example, Alice
uses a SIP application on her PC (referred to as a softphone) to call
Bob on his SIP phone over the Internet. Also shown are two SIP proxy
servers that act on behalf of Alice and Bob to facilitate the session
establishment. This typical arrangement is often referred to as the
"SIP trapezoid" as shown by the geometric shape of the dotted lines

in Figure 1.

Alice "calls" Bob using his SIP identity, a type of Uniform Resource
Identifier (URI) called a SIP URI. SIP URIs are defined in Section
19.1. It has a similar form to an email address, typically

containing a username and a host name. In this case, it is
sip:bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP
service provider. Alice has a SIP URI of sip:alice@atlanta.com.

Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink
or an entry in an address book. SIP also provides a secure URI,
called a SIPS URI. An example would be sips:bob@biloxi.com. A call
made to a SIPS URI guarantees that secure, encrypted transport
(namely TLS) is used to carry all SIP messages from the caller to the
domain of the callee. From there, the request is sent securely to

the callee, but with security mechanisms that depend on the policy of
the domain of the callee.

SIP is based on an HTTP-like request/response transaction model.
Each transaction consists of a request that invokes a particular
method, or function, on the server and at least one response. In

this example, the transaction begins with Alice’s softphone sending

an INVITE request addressed to Bob’s SIP URI. INVITE is an example
of a SIP method that specifies the action that the requestor (Alice)
wants the server (Bob) to take. The INVITE request contains a number
of header fields. Header fields are named attributes that provide
additional information about a message. The ones present in an
INVITE include a unique identifier for the call, the destination

address, Alice’s address, and information about the type of session
that Alice wishes to establish with Bob. The INVITE (message F1 in
Figure 1) might look like this:

Rosenberg, et. al. Standards Track [Page 11]

RFC 3261 SIP: Session Initiation Protocol June 2002

atlanta.com . . . biloxi.com
proxy proxy
Alice’'s Bob's
softphone SIP Phone
I I I I
| INVITEF1 | | |
[---mmmmmmmm e > INVITEF2 | |
100 Trying F3	--------------- > INVITEF4	
[<---mmmmmmeeee-	100 Trying F5	--------------- >
	<---mmmmm -	180 Ringing F6
	180 Ringing F7	<---------------
180 Ringing F8	<---------------	2000KF9
O	200 OK F10	<--------m-mmm--
200 OK F11	[<-----------m---	
<-mmmmmm e I I I		
ACK F12		
I >		
Media Session		
< >		
[BYE F13		
<		
200 OK F14		
I >
I

Figure 1: SIP session setup example with SIP trapezoid

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)
The first line of the text-encoded message contains the method name
(INVITE). The lines that follow are a list of header fields. This

example contains a minimum required set. The header fields are
briefly described below:

Rosenberg, et. al. Standards Track [Page 12]

RFC 3261 SIP: Session Initiation Protocol June 2002

Via contains the address (pc33.atlanta.com) at which Alice is
expecting to receive responses to this request. It also contains a
branch parameter that identifies this transaction.

To contains a display name (Bob) and a SIP or SIPS URI
(sip:bob@biloxi.com) towards which the request was originally
directed. Display names are described in RFC 2822 [3].

From also contains a display hame (Alice) and a SIP or SIPS URI
(sip:alice@atlanta.com) that indicate the originator of the request.
This header field also has a tag parameter containing a random string
(1928301774) that was added to the URI by the softphone. It is used
for identification purposes.

Call-ID contains a globally unique identifier for this call,

generated by the combination of a random string and the softphone’s
host name or IP address. The combination of the To tag, From tag,
and Call-ID completely defines a peer-to-peer SIP relationship
between Alice and Bob and is referred to as a dialog.

CSeq or Command Sequence contains an integer and a method name. The
CSeq number is incremented for each new request within a dialog and
is a traditional sequence number.

Contact contains a SIP or SIPS URI that represents a direct route to
contact Alice, usually composed of a username at a fully qualified

domain name (FQDN). While an FQDN is preferred, many end systems do
not have registered domain names, so IP addresses are permitted.

While the Via header field tells other elements where to send the

response, the Contact header field tells other elements where to send
future requests.

Max-Forwards serves to limit the number of hops a request can make on
the way to its destination. It consists of an integer that is

decremented by one at each hop.

Content-Type contains a description of the message body (not shown).
Content-Length contains an octet (byte) count of the message body.
The complete set of SIP header fields is defined in Section 20.

The details of the session, such as the type of media, codec, or
sampling rate, are not described using SIP. Rather, the body of a

SIP message contains a description of the session, encoded in some

other protocol format. One such format is the Session Description
Protocol (SDP) (RFC 2327 [1]). This SDP message (nhot shown in the

Rosenberg, et. al. Standards Track [Page 13]

RFC 3261 SIP: Session Initiation Protocol June 2002

example) is carried by the SIP message in a way that is analogous to
a document attachment being carried by an email message, or a web
page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP
server in the biloxi.com domain, the softphone sends the INVITE to
the SIP server that serves Alice’s domain, atlanta.com. The address
of the atlanta.com SIP server could have been configured in Alice’s
softphone, or it could have been discovered by DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy
server. A proxy server receives SIP requests and forwards them on
behalf of the requestor. In this example, the proxy server receives
the INVITE request and sends a 100 (Trying) response back to Alice’'s
softphone. The 100 (Trying) response indicates that the INVITE has
been received and that the proxy is working on her behalf to route

the INVITE to the destination. Responses in SIP use a three-digit
code followed by a descriptive phrase. This response contains the
same To, From, Call-ID, CSeq and branch parameter in the Via as the
INVITE, which allows Alice’s softphone to correlate this response to
the sent INVITE. The atlanta.com proxy server locates the proxy
server at biloxi.com, possibly by performing a particular type of DNS
(Domain Name Service) lookup to find the SIP server that serves the
biloxi.com domain. This is described in [4]. As a result, it

obtains the IP address of the biloxi.com proxy server and forwards,

or proxies, the INVITE request there. Before forwarding the request,
the atlanta.com proxy server adds an additional Via header field

value that contains its own address (the INVITE already contains
Alice’s address in the first Via). The biloxi.com proxy server

receives the INVITE and responds with a 100 (Trying) response back to
the atlanta.com proxy server to indicate that it has received the
INVITE and is processing the request. The proxy server consults a
database, generically called a location service, that contains the
current IP address of Bob. (We shall see in the next section how

this database can be populated.) The biloxi.com proxy server adds
another Via header field value with its own address to the INVITE and
proxies it to Bob’s SIP phone.

Bob’s SIP phone receives the INVITE and alerts Bob to the incoming

call from Alice so that Bob can decide whether to answer the call,

that is, Bob’s phone rings. Bob’s SIP phone indicates this in a 180
(Ringing) response, which is routed back through the two proxies in

the reverse direction. Each proxy uses the Via header field to

determine where to send the response and removes its own address from
the top. As a result, although DNS and location service lookups were
required to route the initial INVITE, the 180 (Ringing) response can

be returned to the caller without lookups or without state being

Rosenberg, et. al. Standards Track [Page 14]

RFC 3261 SIP: Session Initiation Protocol June 2002

maintained in the proxies. This also has the desirable property that
each proxy that sees the INVITE will also see all responses to the
INVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes
this information to Alice, perhaps using an audio ringback tone or by
displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up
the handset, his SIP phone sends a 200 (OK) response to indicate that
the call has been answered. The 200 (OK) contains a message body
with the SDP media description of the type of session that Bob is
willing to establish with Alice. As a result, there is a two-phase
exchange of SDP messages: Alice sent one to Bob, and Bob sent one
back to Alice. This two-phase exchange provides basic negotiation
capabilities and is based on a simple offer/answer model of SDP
exchange. If Bob did not wish to answer the call or was busy on
another call, an error response would have been sent instead of the
200 (OK), which would have resulted in no media session being
established. The complete list of SIP response codes is in Section
21. The 200 (OK) (message F9 in Figure 1) might look like this as
Bob sends it out:

SIP/2.0 200 OK

Via: SIP/2.0/UDP server10.biloxi.com
;branch=z9hG4bKnashds8;received=192.0.2.3

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com
;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2

Via: SIP/2.0/UDP pc33.atlanta.com
;branch=29hG4bK776asdhds ;received=192.0.2.1

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

The first line of the response contains the response code (200) and
the reason phrase (OK). The remaining lines contain header fields.
The Via, To, From, Call-ID, and CSeq header fields are copied from
the INVITE request. (There are three Via header field values - one
added by Alice’s SIP phone, one added by the atlanta.com proxy, and
one added by the biloxi.com proxy.) Bob’s SIP phone has added a tag
parameter to the To header field. This tag will be incorporated by

both endpoints into the dialog and will be included in all future

Rosenberg, et. al. Standards Track [Page 15]

RFC 3261 SIP: Session Initiation Protocol June 2002

requests and responses in this call. The Contact header field
contains a URI at which Bob can be directly reached at his SIP phone.
The Content-Type and Content-Length refer to the message body (not
shown) that contains Bob’s SDP media information.

In addition to DNS and location service lookups shown in this
example, proxy servers can make flexible "routing decisions" to
decide where to send a request. For example, if Bob’s SIP phone
returned a 486 (Busy Here) response, the biloxi.com proxy server
could proxy the INVITE to Bob’s voicemail server. A proxy server can
also send an INVITE to a number of locations at the same time. This
type of parallel search is known as forking.

In this case, the 200 (OK) is routed back through the two proxies and

is received by Alice’s softphone, which then stops the ringback tone

and indicates that the call has been answered. Finally, Alice’s
softphone sends an acknowledgement message, ACK, to Bob’s SIP phone
to confirm the reception of the final response (200 (OK)). In this
example, the ACK is sent directly from Alice’s softphone to Bob’s SIP
phone, bypassing the two proxies. This occurs because the endpoints
have learned each other’s address from the Contact header fields
through the INVITE/200 (OK) exchange, which was not known when the
initial INVITE was sent. The lookups performed by the two proxies

are no longer needed, so the proxies drop out of the call flow. This
completes the INVITE/200/ACK three-way handshake used to establish
SIP sessions. Full details on session setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media
packets using the format to which they agreed in the exchange of SDP.
In general, the end-to-end media packets take a different path from

the SIP signaling messages.

During the session, either Alice or Bob may decide to change the
characteristics of the media session. This is accomplished by

sending a re-INVITE containing a new media description. This re-
INVITE references the existing dialog so that the other party knows
that it is to modify an existing session instead of establishing a

new session. The other party sends a 200 (OK) to accept the change.
The requestor responds to the 200 (OK) with an ACK. If the other
party does not accept the change, he sends an error response such as
488 (Not Acceptable Here), which also receives an ACK. However, the
failure of the re-INVITE does not cause the existing call to fail -

the session continues using the previously negotiated

characteristics. Full details on session modification are in Section

14,

Rosenberg, et. al. Standards Track [Page 16]

RFC 3261 SIP: Session Initiation Protocol June 2002

At the end of the call, Bob disconnects (hangs up) first and
generates a BYE message. This BYE is routed directly to Alice’s
softphone, again bypassing the proxies. Alice confirms receipt of
the BYE with a 200 (OK) response, which terminates the session and
the BYE transaction. No ACK is sent - an ACK is only sent in
response to a response to an INVITE request. The reasons for this
special handling for INVITE will be discussed later, but relate to

the reliability mechanisms in SIP, the length of time it can take for
a ringing phone to be answered, and forking. For this reason,
request handling in SIP is often classified as either INVITE or non-
INVITE, referring to all other methods besides INVITE. Full details
on session termination are in Section 15.

Section 24.2 describes the messages shown in Figure 1 in full.

In some cases, it may be useful for proxies in the SIP signaling path

to see all the messaging between the endpoints for the duration of

the session. For example, if the biloxi.com proxy server wished to
remain in the SIP messaging path beyond the initial INVITE, it would
add to the INVITE a required routing header field known as Record-
Route that contained a URI resolving to the hostname or IP address of
the proxy. This information would be received by both Bob’s SIP
phone and (due to the Record-Route header field being passed back in
the 200 (OK)) Alice’s softphone and stored for the duration of the
dialog. The biloxi.com proxy server would then receive and proxy the
ACK, BYE, and 200 (OK) to the BYE. Each proxy can independently
decide to receive subsequent messages, and those messages will pass
through all proxies that elect to receive it. This capability is

frequently used for proxies that are providing mid-call features.

Registration is another common operation in SIP. Registration is one
way that the biloxi.com server can learn the current location of Bob.
Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in the biloxi.com domain known as a SIP
registrar. The REGISTER messages associate Bob’s SIP or SIPS URI
(sip:bob@biloxi.com) with the machine into which he is currently
logged (conveyed as a SIP or SIPS URI in the Contact header field).
The registrar writes this association, also called a binding, to a
database, called the location service, where it can be used by the
proxy in the biloxi.com domain. Often, a registrar server for a

domain is co-located with the proxy for that domain. Itis an

important concept that the distinction between types of SIP servers

is logical, not physical.

Bob is not limited to registering from a single device. For example,

both his SIP phone at home and the one in the office could send
registrations. This information is stored together in the location

Rosenberg, et. al. Standards Track [Page 17]

RFC 3261 SIP: Session Initiation Protocol June 2002

service and allows a proxy to perform various types of searches to
locate Bob. Similarly, more than one user can be registered on a
single device at the same time.

The location service is just an abstract concept. It generally
contains information that allows a proxy to input a URI and receive a
set of zero or more URIs that tell the proxy where to send the
request. Registrations are one way to create this information, but
not the only way. Arbitrary mapping functions can be configured at
the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used

for routing incoming SIP requests and has no role in authorizing
outgoing requests. Authorization and authentication are handled in
SIP either on a request-by-request basis with a challenge/response
mechanism, or by using a lower layer scheme as discussed in Section
26.

The complete set of SIP message details for this registration example
is in Section 24.1.

Additional operations in SIP, such as querying for the capabilities
of a SIP server or client using OPTIONS, or canceling a pending
request using CANCEL, will be introduced in later sections.

5 Structure of the Protocol

SIP is structured as a layered protocol, which means that its

behavior is described in terms of a set of fairly independent

processing stages with only a loose coupling between each stage. The
protocol behavior is described as layers for the purpose of
presentation, allowing the description of functions common across
elements in a single section. It does not dictate an implementation

in any way. When we say that an element "contains” a layer, we mean
it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer.
Furthermore, the elements specified by SIP are logical elements, not
physical ones. A physical realization can choose to act as different
logical elements, perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its syntax and encoding. Its encoding is
specified using an augmented Backus-Naur Form grammar (BNF). The
complete BNF is specified in Section 25; an overview of a SIP
message’s structure can be found in Section 7.

Rosenberg, et. al. Standards Track [Page 18]

RFC 3261 SIP: Session Initiation Protocol June 2002

The second layer is the transport layer. It defines how a client
sends requests and receives responses and how a server receives
requests and sends responses over the network. All SIP elements
contain a transport layer. The transport layer is described in
Section 18.

The third layer is the transaction layer. Transactions are a
fundamental component of SIP. A transaction is a request sent by a
client transaction (using the transport layer) to a server

transaction, along with all responses to that request sent from the
server transaction back to the client. The transaction layer handles
application-layer retransmissions, matching of responses to requests,
and application-layer timeouts. Any task that a user agent client
(UAC) accomplishes takes place using a series of transactions.
Discussion of transactions can be found in Section 17. User agents
contain a transaction layer, as do stateful proxies. Stateless

proxies do not contain a transaction layer. The transaction layer

has a client component (referred to as a client transaction) and a
server component (referred to as a server transaction), each of which
are represented by a finite state machine that is constructed to
process a particular request.

The layer above the transaction layer is called the transaction user
(TU). Each of the SIP entities, except the stateless proxy, is a
transaction user. When a TU wishes to send a request, it creates a
client transaction instance and passes it the request along with the
destination IP address, port, and transport to which to send the
request. A TU that creates a client transaction can also cancel it.
When a client cancels a transaction, it requests that the server stop
further processing, revert to the state that existed before the
transaction was initiated, and generate a specific error response to
that transaction. This is done with a CANCEL request, which
constitutes its own transaction, but references the transaction to be
cancelled (Section 9).

The SIP elements, that is, user agent clients and servers, stateless
and stateful proxies and registrars, contain a core that

distinguishes them from each other. Cores, except for the stateless
proxy, are transaction users. While the behavior of the UAC and UAS
cores depends on the method, there are some common rules for all
methods (Section 8). For a UAC, these rules govern the construction
of a request; for a UAS, they govern the processing of a request and
generating a response. Since registrations play an important role in
SIP, a UAS that handles a REGISTER is given the special name
registrar. Section 10 describes UAC and UAS core behavior for the
REGISTER method. Section 11 describes UAC and UAS core behavior for
the OPTIONS method, used for determining the capabilities of a UA.

Rosenberg, et. al. Standards Track [Page 19]

RFC 3261 SIP: Session Initiation Protocol June 2002

Certain other requests are sent within a dialog. A dialog is a
peer-to-peer SIP relationship between two user agents that persists
for some time. The dialog facilitates sequencing of messages and
proper routing of requests between the user agents. The INVITE
method is the only way defined in this specification to establish a
dialog. When a UAC sends a request that is within the context of a
dialog, it follows the common UAC rules as discussed in Section 8 but
also the rules for mid-dialog requests. Section 12 discusses dialogs
and presents the procedures for their construction and maintenance,
in addition to construction of requests within a dialog.

The most important method in SIP is the INVITE method, which is used
to establish a session between participants. A session is a

collection of participants, and streams of media between them, for

the purposes of communication. Section 13 discusses how sessions are
initiated, resulting in one or more SIP dialogs. Section 14

discusses how characteristics of that session are modified through

the use of an INVITE request within a dialog. Finally, section 15
discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal
entirely with the UA core (Section 9 describes cancellation, which
applies to both UA core and proxy core). Section 16 discusses the
proxy element, which facilitates routing of messages between user
agents.

6 Definitions
The following terms have special significance for SIP.

Address-of-Record: An address-of-record (AOR) is a SIP or SIPS URI
that points to a domain with a location service that can map
the URI to another URI where the user might be available.
Typically, the location service is populated through
registrations. An AOR is frequently thought of as the "public
address" of the user.

Back-to-Back User Agent: A back-to-back user agent (B2BUA) is a
logical entity that receives a request and processes it as a
user agent server (UAS). In order to determine how the request
should be answered, it acts as a user agent client (UAC) and
generates requests. Unlike a proxy server, it maintains dialog
state and must participate in all requests sent on the dialogs
it has established. Since it is a concatenation of a UAC and
UAS, no explicit definitions are needed for its behavior.

Rosenberg, et. al. Standards Track [Page 20]

RFC 3261 SIP: Session Initiation Protocol June 2002

Call: A call is an informal term that refers to some communication
between peers, generally set up for the purposes of a
multimedia conversation.

Call Leg: Another name for a dialog [31]; no longer used in this
specification.

Call Stateful: A proxy is call stateful if it retains state for a
dialog from the initiating INVITE to the terminating BYE
request. A call stateful proxy is always transaction stateful,
but the converse is not necessarily true.

Client: A client is any network element that sends SIP requests
and receives SIP responses. Clients may or may not interact
directly with a human user. User agent clients and proxies are
clients.

Conference: A multimedia session (see below) that contains
multiple participants.

Core: Core designates the functions specific to a particular type
of SIP entity, i.e., specific to either a stateful or stateless
proxy, a user agent or registrar. All cores, except those for
the stateless proxy, are transaction users.

Dialog: A dialog is a peer-to-peer SIP relationship between two
UAs that persists for some time. A dialog is established by
SIP messages, such as a 2xx response to an INVITE request. A
dialog is identified by a call identifier, local tag, and a
remote tag. A dialog was formerly known as a call leg in RFC
2543.

Downstream: A direction of message forwarding within a transaction
that refers to the direction that requests flow from the user
agent client to user agent server.

Final Response: A response that terminates a SIP transaction, as
opposed to a provisional response that does not. All 2xx, 3xXx,
4xx, 5xx and 6xx responses are final.

Header: A header is a component of a SIP message that conveys
information about the message. It is structured as a sequence
of header fields.

Header Field: A header field is a component of the SIP message
header. A header field can appear as one or more header field
rows. Header field rows consist of a header field name and zero
or more header field values. Multiple header field values on a

Rosenberg, et. al. Standards Track [Page 21]

RFC 3261 SIP: Session Initiation Protocol June 2002

given header field row are separated by commas. Some header
fields can only have a single header field value, and as a
result, always appear as a single header field row.

Header Field Value: A header field value is a single value; a
header field consists of zero or more header field values.

Home Domain: The domain providing service to a SIP user.
Typically, this is the domain present in the URI in the
address-of-record of a registration.

Informational Response: Same as a provisional response.

Initiator, Calling Party, Caller: The party initiating a session
(and dialog) with an INVITE request. A caller retains this
role from the time it sends the initial INVITE that established
a dialog until the termination of that dialog.

Invitation: An INVITE request.

Invitee, Invited User, Called Party, Callee: The party that
receives an INVITE request for the purpose of establishing a
new session. A callee retains this role from the time it
receives the INVITE until the termination of the dialog
established by that INVITE.

Location Service: A location service is used by a SIP redirect or
proxy server to obtain information about a callee’s possible
location(s). It contains a list of bindings of address-of-
record keys to zero or more contact addresses. The bindings
can be created and removed in many ways; this specification
defines a REGISTER method that updates the bindings.

Loop: A request that arrives at a proxy, is forwarded, and later
arrives back at the same proxy. When it arrives the second
time, its Request-URI is identical to the first time, and other
header fields that affect proxy operation are unchanged, so
that the proxy would make the same processing decision on the
request it made the first time. Looped requests are errors,
and the procedures for detecting them and handling them are
described by the protocol.

Loose Routing: A proxy is said to be loose routing if it follows
the procedures defined in this specification for processing of
the Route header field. These procedures separate the
destination of the request (present in the Request-URI) from

Rosenberg, et. al. Standards Track [Page 22]

RFC 3261 SIP: Session Initiation Protocol June 2002

the set of proxies that need to be visited along the way
(present in the Route header field). A proxy compliant to
these mechanisms is also known as a loose router.

Message: Data sent between SIP elements as part of the protocol.
SIP messages are either requests or responses.

Method: The method is the primary function that a request is meant
to invoke on a server. The method is carried in the request
message itself. Example methods are INVITE and BYE.

Outbound Proxy: A proxy that receives requests from a client, even
though it may not be the server resolved by the Request-URI.
Typically, a UA is manually configured with an outbound proxy,
or can learn about one through auto-configuration protocols.

Parallel Search: In a parallel search, a proxy issues several
requests to possible user locations upon receiving an incoming
request. Rather than issuing one request and then waiting for
the final response before issuing the next request as in a
sequential search, a parallel search issues requests without
waiting for the result of previous requests.

Provisional Response: A response used by the server to indicate
progress, but that does not terminate a SIP transaction. 1xx
responses are provisional, other responses are considered
final.

Proxy, Proxy Server: An intermediary entity that acts as both a
server and a client for the purpose of making requests on
behalf of other clients. A proxy server primarily plays the
role of routing, which means its job is to ensure that a
request is sent to another entity "closer" to the targeted
user. Proxies are also useful for enforcing policy (for
example, making sure a user is allowed to make a call). A
proxy interprets, and, if necessary, rewrites specific parts of
a request message before forwarding it.

Recursion: A client recurses on a 3xx response when it generates a
new request to one or more of the URIs in the Contact header
field in the response.

Redirect Server: A redirect server is a user agent server that

generates 3xx responses to requests it receives, directing the
client to contact an alternate set of URIs.

Rosenberg, et. al. Standards Track [Page 23]

RFC 3261 SIP: Session Initiation Protocol June 2002

Registrar: A registrar is a server that accepts REGISTER requests
and places the information it receives in those requests into
the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with
a method other than INVITE, ACK, or CANCEL.

Request: A SIP message sent from a client to a server, for the
purpose of invoking a particular operation.

Response: A SIP message sent from a server to a client, for
indicating the status of a request sent from the client to the
server.

Ringback: Ringback is the signaling tone produced by the calling
party’s application indicating that a called party is being
alerted (ringing).

Route Set: A route set is a collection of ordered SIP or SIPS URI
which represent a list of proxies that must be traversed when
sending a particular request. A route set can be learned,
through headers like Record-Route, or it can be configured.

Server: A server is a network element that receives requests in
order to service them and sends back responses to those
requests. Examples of servers are proxies, user agent servers,
redirect servers, and registrars.

Sequential Search: In a sequential search, a proxy server attempts
each contact address in sequence, proceeding to the next one
only after the previous has generated a final response. A 2xx
or 6xx class final response always terminates a sequential
search.

Session: From the SDP specification: "A multimedia session is a
set of multimedia senders and receivers and the data streams
flowing from senders to receivers. A multimedia conference is
an example of a multimedia session." (RFC 2327 [1]) (A session
as defined for SDP can comprise one or more RTP sessions.) As
defined, a callee can be invited several times, by different
calls, to the same session. If SDP is used, a session is
defined by the concatenation of the SDP user name, session id,
network type, address type, and address elements in the origin
field.

SIP Transaction: A SIP transaction occurs between a client and a

server and comprises all messages from the first request sent
from the client to the server up to a final (non-1xx) response

Rosenberg, et. al. Standards Track [Page 24]

RFC 3261 SIP: Session Initiation Protocol June 2002

sent from the server to the client. If the request is INVITE

and the final response is a non-2xx, the transaction also

includes an ACK to the response. The ACK for a 2xx response to
an INVITE request is a separate transaction.

Spiral: A spiral is a SIP request that is routed to a proxy,
forwarded onwards, and arrives once again at that proxy, but
this time differs in a way that will result in a different
processing decision than the original request. Typically, this
means that the request’'s Request-URI differs from its previous
arrival. A spiral is not an error condition, unlike a loop. A
typical cause for this is call forwarding. A user calls
joe@example.com. The example.com proxy forwards it to Joe’s
PC, which in turn, forwards it to bob@example.com. This
request is proxied back to the example.com proxy. However,
this is not a loop. Since the request is targeted at a
different user, it is considered a spiral, and is a valid
condition.

Stateful Proxy: A logical entity that maintains the client and
server transaction state machines defined by this specification
during the processing of a request, also known as a transaction
stateful proxy. The behavior of a stateful proxy is further
defined in Section 16. A (transaction) stateful proxy is not
the same as a call stateful proxy.

Stateless Proxy: A logical entity that does not maintain the
client or server transaction state machines defined in this
specification when it processes requests. A stateless proxy
forwards every request it receives downstream and every
response it receives upstream.

Strict Routing: A proxy is said to be strict routing if it follows
the Route processing rules of RFC 2543 and many prior work in
progress versions of this RFC. That rule caused proxies to
destroy the contents of the Request-URI when a Route header
field was present. Strict routing behavior is not used in this
specification, in favor of a loose routing behavior. Proxies
that perform strict routing are also known as strict routers.

Target Refresh Request: A target refresh request sent within a
dialog is defined as a request that can modify the remote
target of the dialog.

Transaction User (TU): The layer of protocol processing that

resides above the transaction layer. Transaction users include
the UAC core, UAS core, and proxy core.

Rosenberg, et. al. Standards Track [Page 25]

RFC 3261 SIP: Session Initiation Protocol June 2002

Upstream: A direction of message forwarding within a transaction
that refers to the direction that responses flow from the user
agent server back to the user agent client.

URL-encoded: A character string encoded according to RFC 2396,
Section 2.4 [5].

User Agent Client (UAC): A user agent client is a logical entity
that creates a new request, and then uses the client
transaction state machinery to send it. The role of UAC lasts
only for the duration of that transaction. In other words, if
a piece of software initiates a request, it acts as a UAC for
the duration of that transaction. If it receives a request
later, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that
reside above the transaction and transport layers.

User Agent Server (UAS): A user agent server is a logical entity
that generates a response to a SIP request. The response
accepts, rejects, or redirects the request. This role lasts
only for the duration of that transaction. In other words, if
a piece of software responds to a request, it acts as a UAS for
the duration of that transaction. If it generates a request
later, it assumes the role of a user agent client for the
processing of that transaction.

UAS Core: The set of processing functions required at a UAS that
resides above the transaction and transport layers.

User Agent (UA): A logical entity that can act as both a user
agent client and user agent server.

The role of UAC and UAS, as well as proxy and redirect servers, are
defined on a transaction-by-transaction basis. For example, the user
agent initiating a call acts as a UAC when sending the initial INVITE
request and as a UAS when receiving a BYE request from the callee.
Similarly, the same software can act as a proxy server for one
request and as a redirect server for the next request.

Proxy, location, and registrar servers defined above are logical
entities; implementations MAY combine them into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the UTF-8 charset (RFC 2279
[7D).

Rosenberg, et. al. Standards Track [Page 26]

RFC 3261 SIP: Session Initiation Protocol June 2002

A SIP message is either a request from a client to a server, or a
response from a server to a client.

Both Request (section 7.1) and Response (section 7.2) messages use
the basic format of RFC 2822 [3], even though the syntax differs in
character set and syntax specifics. (SIP allows header fields that
would not be valid RFC 2822 header fields, for example.) Both types
of messages consist of a start-line, one or more header fields, an
empty line indicating the end of the header fields, and an optional
message-body.

generic-message = start-line
*message-header
CRLF
[message-body]

start-line = Request-Line / Status-Line

The start-line, each message-header line, and the empty line MUST be
terminated by a carriage-return line-feed sequence (CRLF). Note that
the empty line MUST be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s
message and header field syntax is identical to HTTP/1.1. Rather
than repeating the syntax and semantics here, we use [HX.Y] to refer
to Section X.Y of the current HTTP/1.1 specification (RFC 2616 [8]).

However, SIP is not an extension of HTTP.
7.1 Requests

SIP requests are distinguished by having a Request-Line for a start-
line. A Request-Line contains a method name, a Request-URI, and the
protocol version separated by a single space (SP) character.

The Request-Line ends with CRLF. No CR or LF are allowed except in
the end-of-line CRLF sequence. No linear whitespace (LWS) is allowed
in any of the elements.

Request-Line = Method SP Request-URI SP SIP-Version CRLF

Method: This specification defines six methods: REGISTER for
registering contact information, INVITE, ACK, and CANCEL for
setting up sessions, BYE for terminating sessions, and
OPTIONS for querying servers about their capabilities. SIP
extensions, documented in standards track RFCs, may define
additional methods.

Rosenberg, et. al. Standards Track [Page 27]

RFC 3261 SIP: Session Initiation Protocol June 2002

Request-URI: The Request-URI is a SIP or SIPS URI as described in
Section 19.1 or a general URI (RFC 2396 [5]). It indicates
the user or service to which this request is being addressed.
The Request-URI MUST NOT contain unescaped spaces or control
characters and MUST NOT be enclosed in "<>".

SIP elements MAY support Request-URIs with schemes other than
"sip" and "sips", for example the "tel" URI scheme of RFC

2806 [9]. SIP elements MAY translate non-SIP URIs using any
mechanism at their disposal, resulting in SIP URI, SIPS URI,

or some other scheme.

SIP-Version: Both request and response messages include the
version of SIP in use, and follow [H3.1] (with HTTP replaced
by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version
ordering, compliance requirements, and upgrading of version
numbers. To be compliant with this specification,
applications sending SIP messages MUST include a SIP-Version
of "SIP/2.0". The SIP-Version string is case-insensitive,
but implementations MUST send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal
string. In practice, this should make no difference.

7.2 Responses

SIP responses are distinguished from requests by having a Status-Line
as their start-line. A Status-Line consists of the protocol version
followed by a numeric Status-Code and its associated textual phrase,
with each element separated by a single SP character.

No CR or LF is allowed except in the final CRLF sequence.
Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

The Status-Code is a 3-digit integer result code that indicates the
outcome of an attempt to understand and satisfy a request. The
Reason-Phrase is intended to give a short textual description of the
Status-Code. The Status-Code is intended for use by automata,
whereas the Reason-Phrase is intended for the human user. A client
is not required to examine or display the Reason-Phrase.

While this specification suggests specific wording for the reason
phrase, implementations MAY choose other text, for example, in the
language indicated in the Accept-Language header field of the
request.

Rosenberg, et. al. Standards Track [Page 28]

RFC 3261 SIP: Session Initiation Protocol June 2002

The first digit of the Status-Code defines the class of response.

The last two digits do not have any categorization role. For this
reason, any response with a status code between 100 and 199 is
referred to as a "1xx response”, any response with a status code
between 200 and 299 as a "2xx response”, and so on. SIP/2.0 allows
six values for the first digit:

1xx: Provisional -- request received, continuing to process the
request;

2xx: Success -- the action was successfully received, understood,
and accepted;

3xx: Redirection -- further action needs to be taken in order to
complete the request;

4xx: Client Error -- the request contains bad syntax or cannot be
fulfilled at this server;

5xx: Server Error -- the server failed to fulfill an apparently
valid request;

6xx: Global Failure -- the request cannot be fulfilled at any
server.

Section 21 defines these classes and describes the individual codes.
7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax
and semantics. In particular, SIP header fields follow the [H4.2]
definitions of syntax for the message-header and the rules for
extending header fields over multiple lines. However, the latter is
specified in HTTP with implicit whitespace and folding. This
specification conforms to RFC 2234 [10] and uses only explicit
whitespace and folding as an integral part of the grammar.

[H4.2] also specifies that multiple header fields of the same field

name whose value is a comma-separated list can be combined into one
header field. That applies to SIP as well, but the specific rule is
different because of the different grammars. Specifically, any SIP
header whose grammar is of the form

header = "header-name" HCOLON header-value *(COMMA header-value)
allows for combining header fields of the same name into a comma-

separated list. The Contact header field allows a comma-separated
list unless the header field value is "*".

Rosenberg, et. al. Standards Track [Page 29]

RFC 3261 SIP: Session Initiation Protocol June 2002

7.3.1 Header Field Format

Header fields follow the same generic header format as that given in
Section 2.2 of RFC 2822 [3]. Each header field consists of a field
name followed by a colon (":") and the field value.

field-name: field-value

The formal grammar for a message-header specified in Section 25
allows for an arbitrary amount of whitespace on either side of the

colon; however, implementations should avoid spaces between the field
name and the colon and use a single space (SP) between the colon and
the field-value.

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

Thus, the above are all valid and equivalent, but the last is the
preferred form.

Header fields can be extended over multiple lines by preceding each
extra line with at least one SP or horizontal tab (HT). The line

break and the whitespace at the beginning of the next line are
treated as a single SP character. Thus, the following are

equivalent:

Subject: | know you're there, pick up the phone and talk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

The relative order of header fields with different field names is not
significant. However, itis RECOMMENDED that header fields which are
needed for proxy processing (Via, Route, Record-Route, Proxy-Require,
Max-Forwards, and Proxy-Authorization, for example) appear towards
the top of the message to facilitate rapid parsing. The relative

order of header field rows with the same field name is important.

Multiple header field rows with the same field-name MAY be present in

a message if and only if the entire field-value for that header field

is defined as a comma-separated list (that is, if follows the grammar
defined in Section 7.3). It MUST be possible to combine the multiple
header field rows into one "field-name: field-value" pair, without
changing the semantics of the message, by appending each subsequent
field-value to the first, each separated by a comma. The exceptions

to this rule are the WWW-Authenticate, Authorization, Proxy-
Authenticate, and Proxy-Authorization header fields. Multiple header

Rosenberg, et. al. Standards Track [Page 30]

RFC 3261 SIP: Session Initiation Protocol June 2002

field rows with these names MAY be present in a message, but since
their grammar does not follow the general form listed in Section 7.3,
they MUST NOT be combined into a single header field row.

Implementations MUST be able to process multiple header field rows
with the same name in any combination of the single-value-per-line or
comma-separated value forms.

The following groups of header field rows are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>,
<sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the
others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,
<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It

will always be either an opaque sequence of TEXT-UTF8 octets, or a
combination of whitespace, tokens, separators, and quoted strings.
Many existing header fields will adhere to the general form of a

value followed by a semi-colon separated sequence of parameter-name,
parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

Rosenberg, et. al. Standards Track [Page 31]

RFC 3261 SIP: Session Initiation Protocol June 2002

Even though an arbitrary number of parameter pairs may be attached to
a header field value, any given parameter-name MUST NOT appear more
than once.

When comparing header fields, field names are always case-
insensitive. Unless otherwise stated in the definition of a

particular header field, field values, parameter names, and parameter
values are case-insensitive. Tokens are always case-insensitive.
Unless specified otherwise, values expressed as quoted strings are
case-sensitive. For example,

Contact: <sip:alice@atlanta.com>;expires=3600
is equivalent to

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600
and

Content-Disposition: session;handling=optional
is equivalent to

content-disposition: Session;HANDLING=OPTIONAL
The following two header fields are not equivalent:

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These
are called request header fields and response header fields,
respectively. If a header field appears in a message not matching

its category (such as a request header field in a response), it MUST
be ignored. Section 20 defines the classification of each header

field.

7.3.3 Compact Form

SIP provides a mechanism to represent common header field names in an
abbreviated form. This may be useful when messages would otherwise
become too large to be carried on the transport available to it

(exceeding the maximum transmission unit (MTU) when using UDP, for
example). These compact forms are defined in Section 20. A compact
form MAY be substituted for the longer form of a header field name at

any time without changing the semantics of the message. A header

Rosenberg, et. al. Standards Track [Page 32]

RFC 3261 SIP: Session Initiation Protocol June 2002

field name MAY appear in both long and short forms within the same
message. Implementations MUST accept both the long and short forms
of each header name.

7.4 Bodies

Requests, including new requests defined in extensions to this
specification, MAY contain message bodies unless otherwise noted.
The interpretation of the body depends on the request method.

For response messages, the request method and the response status
code determine the type and interpretation of any message body. All
responses MAY include a body.

7.4.1 Message Body Type

The Internet media type of the message body MUST be given by the
Content-Type header field. If the body has undergone any encoding
such as compression, then this MUST be indicated by the Content-
Encoding header field; otherwise, Content-Encoding MUST be omitted.
If applicable, the character set of the message body is indicated as
part of the Content-Type header-field value.

The "multipart" MIME type defined in RFC 2046 [11] MAY be used within
the body of the message. Implementations that send requests
containing multipart message bodies MUST send a session description
as a non-multipart message body if the remote implementation requests
this through an Accept header field that does not contain multipart.

SIP messages MAY contain binary bodies or body parts. When no
explicit charset parameter is provided by the sender, media subtypes
of the "text" type are defined to have a default charset value of
"UTF-8".

7.4.2 Message Body Length

The body length in bytes is provided by the Content-Length header
field. Section 20.14 describes the necessary contents of this header
field in detail.

The "chunked" transfer encoding of HTTP/1.1 MUST NOT be used for SIP.
(Note: The chunked encoding modifies the body of a message in order

to transfer it as a series of chunks, each with its own size

indicator.)

Rosenberg, et. al. Standards Track [Page 33]

RFC 3261 SIP: Session Initiation Protocol June 2002

7.5 Framing SIP Messages

Unlike HTTP, SIP implementations can use UDP or other unreliable
datagram protocols. Each such datagram carries one request or
response. See Section 18 on constraints on usage of unreliable
transports.

Implementations processing SIP messages over stream-oriented
transports MUST ignore any CRLF appearing before the start-line
[H4.1].

The Content-Length header field value is used to locate the end of
each SIP message in a stream. It will always be present when SIP
messages are sent over stream-oriented transports.

8 General User Agent Behavior

A user agent represents an end system. It contains a user agent
client (UAC), which generates requests, and a user agent server
(UAS), which responds to them. A UAC is capable of generating a
request based on some external stimulus (the user clicking a button,
or a signal on a PSTN line) and processing a response. A UAS is
capable of receiving a request and generating a response based on
user input, external stimulus, the result of a program execution, or
some other mechanism.

When a UAC sends a request, the request passes through some number of
proxy servers, which forward the request towards the UAS. When the
UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, based
on whether the request or response is inside or outside of a dialog,

and second, based on the method of a request. Dialogs are discussed
thoroughly in Section 12; they represent a peer-to-peer relationship
between user agents and are established by specific SIP methods, such
as INVITE.

In this section, we discuss the method-independent rules for UAC and
UAS behavior when processing requests that are outside of a dialog.
This includes, of course, the requests which themselves establish a
dialog.

Security procedures for requests and responses outside of a dialog
are described in Section 26. Specifically, mechanisms exist for the
UAS and UAC to mutually authenticate. A limited set of privacy
features are also supported through encryption of bodies using
S/MIME.

Rosenberg, et. al. Standards Track [Page 34]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.1 UAC Behavior
This section covers UAC behavior outside of a dialog.
8.1.1 Generating the Request

A valid SIP request formulated by a UAC MUST, at a minimum, contain
the following header fields: To, From, CSeq, Call-ID, Max-Forwards,
and Via; all of these header fields are mandatory in all SIP

requests. These six header fields are the fundamental building

blocks of a SIP message, as they jointly provide for most of the

critical message routing services including the addressing of
messages, the routing of responses, limiting message propagation,
ordering of messages, and the unique identification of transactions.
These header fields are in addition to the mandatory request line,
which contains the method, Request-URI, and SIP version.

Examples of requests sent outside of a dialog include an INVITE to
establish a session (Section 13) and an OPTIONS to query for
capabilities (Section 11).

8.1.1.1 Request-URI

The initial Request-URI of the message SHOULD be set to the value of
the URI in the To field. One notable exception is the REGISTER
method; behavior for setting the Request-URI of REGISTER is given in
Section 10. It may also be undesirable for privacy reasons or
convenience to set these fields to the same value (especially if the
originating UA expects that the Request-URI will be changed during
transit).

In some special circumstances, the presence of a pre-existing route

set can affect the Request-URI of the message. A pre-existing route

set is an ordered set of URIs that identify a chain of servers, to

which a UAC will send outgoing requests that are outside of a dialog.
Commonly, they are configured on the UA by a user or service provider
manually, or through some other non-SIP mechanism. When a provider
wishes to configure a UA with an outbound proxy, it is RECOMMENDED
that this be done by providing it with a pre-existing route set with

a single URI, that of the outbound proxy.

When a pre-existing route set is present, the procedures for
populating the Request-URI and Route header field detailed in Section
12.2.1.1 MUST be followed (even though there is no dialog), using the
desired Request-URI as the remote target URI.

Rosenberg, et. al. Standards Track [Page 35]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.1.1.2To

The To header field first and foremost specifies the desired

"logical" recipient of the request, or the address-of-record of the

user or resource that is the target of this request. This may or may

not be the ultimate recipient of the request. The To header field

MAY contain a SIP or SIPS URI, but it may also make use of other URI
schemes (the tel URL (RFC 2806 [9]), for example) when appropriate.
All SIP implementations MUST support the SIP URI scheme. Any
implementation that supports TLS MUST support the SIPS URI scheme.
The To header field allows for a display name.

A UAC may learn how to populate the To header field for a particular
request in a number of ways. Usually the user will suggest the To
header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book. Frequently,
the user will not enter a complete URI, but rather a string of digits

or letters (for example, "bob"). It is at the discretion of the UA

to choose how to interpret this input. Using the string to form the
user part of a SIP URI implies that the UA wishes the name to be
resolved in the domain to the right-hand side (RHS) of the at-sign in
the SIP URI (for instance, sip:bob@example.com). Using the string to
form the user part of a SIPS URI implies that the UA wishes to
communicate securely, and that the name is to be resolved in the
domain to the RHS of the at-sign. The RHS will frequently be the
home domain of the requestor, which allows for the home domain to
process the outgoing request. This is useful for features like

"speed dial" that require interpretation of the user part in the home
domain. The tel URL may be used when the UA does not wish to specify
the domain that should interpret a telephone number that has been
input by the user. Rather, each domain through which the request
passes would be given that opportunity. As an example, a user in an
airport might log in and send requests through an outbound proxy in
the airport. If they enter "411" (this is the phone number for local
directory assistance in the United States), that needs to be
interpreted and processed by the outbound proxy in the airport, not
the user's home domain. In this case, tel:411 would be the right
choice.

A request outside of a dialog MUST NOT contain a To tag; the tag in
the To field of a request identifies the peer of the dialog. Since
no dialog is established, no tag is present.

For further information on the To header field, see Section 20.39.
The following is an example of a valid To header field:

To: Carol <sip:carol@chicago.com>

Rosenberg, et. al. Standards Track [Page 36]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.1.1.3 From

The From header field indicates the logical identity of the initiator

of the request, possibly the user’'s address-of-record. Like the To
header field, it contains a URI and optionally a display name. It is

used by SIP elements to determine which processing rules to apply to
a request (for example, automatic call rejection). As such, it is

very important that the From URI not contain IP addresses or the FQDN
of the host on which the UA is running, since these are not logical
names.

The From header field allows for a display name. A UAC SHOULD use
the display name "Anonymous", along with a syntactically correct, but
otherwise meaningless URI (like sip:thisis@anonymous.invalid), if the
identity of the client is to remain hidden.

Usually, the value that populates the From header field in requests
generated by a particular UA is pre-provisioned by the user or by the
administrators of the user’s local domain. If a particular UA is

used by multiple users, it might have switchable profiles that

include a URI corresponding to the identity of the profiled user.
Recipients of requests can authenticate the originator of a request

in order to ascertain that they are who their From header field

claims they are (see Section 22 for more on authentication).

The From field MUST contain a new "tag" parameter, chosen by the UAC.
See Section 19.3 for details on choosing a tag.

For further information on the From header field, see Section 20.20.
Examples:

From: "Bob" <sips:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

8.1.1.4 Call-ID

The Call-ID header field acts as a unique identifier to group

together a series of messages. It MUST be the same for all requests
and responses sent by either UA in a dialog. It SHOULD be the same
in each registration from a UA.

In a new request created by a UAC outside of any dialog, the Call-ID
header field MUST be selected by the UAC as a globally unique
identifier over space and time unless overridden by method-specific
behavior. All SIP UAs must have a means to guarantee that the Call-
ID header fields they produce will not be inadvertently generated by
any other UA. Note that when requests are retried after certain

Rosenberg, et. al. Standards Track [Page 37]

RFC 3261 SIP: Session Initiation Protocol June 2002

failure responses that solicit an amendment to a request (for
example, a challenge for authentication), these retried requests are
not considered new requests, and therefore do not need new Call-ID
header fields; see Section 8.1.3.5.

Use of cryptographically random identifiers (RFC 1750 [12]) in the
generation of Call-IDs is RECOMMENDED. Implementations MAY use the
form "localid@host". Call-IDs are case-sensitive and are simply

compared byte-by-byte.

Using cryptographically random identifiers provides some
protection against session hijacking and reduces the likelihood of
unintentional Call-ID collisions.

No provisioning or human interface is required for the selection of
the Call-ID header field value for a request.

For further information on the Call-ID header field, see Section
20.8.

Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6 @foo.bar.com

8.1.1.5 CSeq

The CSeq header field serves as a way to identify and order
transactions. It consists of a sequence number and a method. The
method MUST match that of the request. For non-REGISTER requests
outside of a dialog, the sequence number value is arbitrary. The
sequence number value MUST be expressible as a 32-bit unsigned
integer and MUST be less than 2**31. As long as it follows the above
guidelines, a client may use any mechanism it would like to select
CSeq header field values.

Section 12.2.1.1 discusses construction of the CSeq for requests
within a dialog.

Example:

CSeq: 4711 INVITE

Rosenberg, et. al. Standards Track [Page 38]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.1.1.6 Max-Forwards

The Max-Forwards header field serves to limit the number of hops a
request can transit on the way to its destination. It consists of an
integer that is decremented by one at each hop. If the Max-Forwards
value reaches 0 before the request reaches its destination, it will

be rejected with a 483(Too Many Hops) error response.

A UAC MUST insert a Max-Forwards header field into each request it
originates with a value that SHOULD be 70. This number was chosen to
be sufficiently large to guarantee that a request would not be

dropped in any SIP network when there were no loops, but not so large
as to consume proxy resources when a loop does occur. Lower values
should be used with caution and only in networks where topologies are
known by the UA.

8.1.1.7 Via

The Via header field indicates the transport used for the transaction
and identifies the location where the response is to be sent. A Via
header field value is added only after the transport that will be

used to reach the next hop has been selected (which may involve the
usage of the procedures in [4]).

When the UAC creates a request, it MUST insert a Via into that
request. The protocol name and protocol version in the header field
MUST be SIP and 2.0, respectively. The Via header field value MUST
contain a branch parameter. This parameter is used to identify the
transaction created by that request. This parameter is used by both
the client and the server.

The branch parameter value MUST be unigue across space and time for
all requests sent by the UA. The exceptions to this rule are CANCEL

and ACK for non-2xx responses. As discussed below, a CANCEL request
will have the same value of the branch parameter as the request it
cancels. As discussed in Section 17.1.1.3, an ACK for a non-2xx
response will also have the same branch ID as the INVITE whose
response it acknowledges.

The uniqueness property of the branch ID parameter, to facilitate
its use as a transaction ID, was not part of RFC 2543.

The branch ID inserted by an element compliant with this

specification MUST always begin with the characters "z9hG4bK". These
7 characters are used as a magic cookie (7 is deemed sufficient to
ensure that an older RFC 2543 implementation would not pick such a
value), so that servers receiving the request can determine that the
branch ID was constructed in the fashion described by this

Rosenberg, et. al. Standards Track [Page 39]

RFC 3261 SIP: Session Initiation Protocol June 2002

specification (that is, globally unique). Beyond this requirement,
the precise format of the branch token is implementation-defined.

The Via header maddr, ttl, and sent-by components will be set when
the request is processed by the transport layer (Section 18).

Via processing for proxies is described in Section 16.6 Item 8 and
Section 16.7 Item 3.

8.1.1.8 Contact

The Contact header field provides a SIP or SIPS URI that can be used
to contact that specific instance of the UA for subsequent requests.

The Contact header field MUST be present and contain exactly one SIP
or SIPS URI in any request that can result in the establishment of a
dialog. For the methods defined in this specification, that includes

only the INVITE request. For these requests, the scope of the

Contact is global. That is, the Contact header field value contains

the URI at which the UA would like to receive requests, and this URI
MUST be valid even if used in subsequent requests outside of any
dialogs.

If the Request-URI or top Route header field value contains a SIPS
URI, the Contact header field MUST contain a SIPS URI as well.

For further information on the Contact header field, see Section
20.10.

8.1.1.9 Supported and Require

If the UAC supports extensions to SIP that can be applied by the
server to the response, the UAC SHOULD include a Supported header
field in the request listing the option tags (Section 19.2) for those
extensions.

The option tags listed MUST only refer to extensions defined in
standards-track RFCs. This is to prevent servers from insisting that
clients implement non-standard, vendor-defined features in order to
receive service. Extensions defined by experimental and
informational RFCs are explicitly excluded from usage with the
Supported header field in a request, since they too are often used to
document vendor-defined extensions.

If the UAC wishes to insist that a UAS understand an extension that
the UAC will apply to the request in order to process the request, it
MUST insert a Require header field into the request listing the
option tag for that extension. If the UAC wishes to apply an
extension to the request and insist that any proxies that are

Rosenberg, et. al. Standards Track [Page 40]

RFC 3261 SIP: Session Initiation Protocol June 2002

traversed understand that extension, it MUST insert a Proxy-Require
header field into the request listing the option tag for that
extension.

As with the Supported header field, the option tags in the Require
and Proxy-Require header fields MUST only refer to extensions defined
in standards-track RFCs.

8.1.1.10 Additional Message Components

After a new request has been created, and the header fields described
above have been properly constructed, any additional optional header
fields are added, as are any header fields specific to the method.

SIP requests MAY contain a MIME-encoded message-body. Regardless of
the type of body that a request contains, certain header fields must

be formulated to characterize the contents of the body. For further
information on these header fields, see Sections 20.11 through 20.15.

8.1.2 Sending the Request

The destination for the request is then computed. Unless there is
local policy specifying otherwise, the destination MUST be determined
by applying the DNS procedures described in [4] as follows. If the
first element in the route set indicated a strict router (resulting

in forming the request as described in Section 12.2.1.1), the
procedures MUST be applied to the Request-URI of the request.
Otherwise, the procedures are applied to the first Route header field
value in the request (if one exists), or to the request’s Request-URI

if there is no Route header field present. These procedures yield an
ordered set of address, port, and transports to attempt. Independent
of which URI is used as input to the procedures of [4], if the
Request-URI specifies a SIPS resource, the UAC MUST follow the
procedures of [4] as if the input URI were a SIPS URI.

Local policy MAY specify an alternate set of destinations to attempt.

If the Request-URI contains a SIPS URI, any alternate destinations
MUST be contacted with TLS. Beyond that, there are no restrictions

on the alternate destinations if the request contains no Route header
field. This provides a simple alternative to a pre-existing route

set as a way to specify an outbound proxy. However, that approach

for configuring an outbound proxy is NOT RECOMMENDED; a pre-existing
route set with a single URI SHOULD be used instead. If the request
contains a Route header field, the request SHOULD be sent to the
locations derived from its topmost value, but MAY be sent to any

server that the UA is certain will honor the Route and Request-URI
policies specified in this document (as opposed to those in RFC

2543). In particular, a UAC configured with an outbound proxy SHOULD

Rosenberg, et. al. Standards Track [Page 41]

RFC 3261 SIP: Session Initiation Protocol June 2002

attempt to send the request to the location indicated in the first
Route header field value instead of adopting the policy of sending
all messages to the outbound proxy.

This ensures that outbound proxies that do not add Record-Route
header field values will drop out of the path of subsequent
requests. It allows endpoints that cannot resolve the first Route
URI to delegate that task to an outbound proxy.

The UAC SHOULD follow the procedures defined in [4] for stateful
elements, trying each address until a server is contacted. Each try
constitutes a new transaction, and therefore each carries a different
topmost Via header field value with a new branch parameter.
Furthermore, the transport value in the Via header field is set to
whatever transport was determined for the target server.

8.1.3 Processing Responses

Responses are first processed by the transport layer and then passed
up to the transaction layer. The transaction layer performs its
processing and then passes the response up to the TU. The majority
of response processing in the TU is method specific. However, there
are some general behaviors independent of the method.

8.1.3.1 Transaction Layer Errors

In some cases, the response returned by the transaction layer will
not be a SIP message, but rather a transaction layer error. When a
timeout error is received from the transaction layer, it MUST be
treated as if a 408 (Request Timeout) status code has been received.
If a fatal transport error is reported by the transport layer

(generally, due to fatal ICMP errors in UDP or connection failures in
TCP), the condition MUST be treated as a 503 (Service Unavailable)
status code.

8.1.3.2 Unrecognized Responses

A UAC MUST treat any final response it does not recognize as being
equivalent to the x00 response code of that class, and MUST be able

to process the x00 response code for all classes. For example, if a

UAC receives an unrecognized response code of 431, it can safely
assume that there was something wrong with its request and treat the
response as if it had received a 400 (Bad Request) response code. A
UAC MUST treat any provisional response different than 100 that it
does not recognize as 183 (Session Progress). A UAC MUST be able to
process 100 and 183 responses.

Rosenberg, et. al. Standards Track [Page 42]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.1.3.3 Vias

If more than one Via header field value is present in a response, the
UAC SHOULD discard the message.

The presence of additional Via header field values that precede
the originator of the request suggests that the message was
misrouted or possibly corrupted.

8.1.3.4 Processing 3xx Responses

Upon receipt of a redirection response (for example, a 301 response
status code), clients SHOULD use the URI(s) in the Contact header
field to formulate one or more new requests based on the redirected
request. This process is similar to that of a proxy recursing on a

3xx class response as detailed in Sections 16.5 and 16.6. A client
starts with an initial target set containing exactly one URI, the
Request-URI of the original request. If a client wishes to formulate

new requests based on a 3xx class response to that request, it places
the URIs to try into the target set. Subject to the restrictions in

this specification, a client can choose which Contact URIs it places

into the target set. As with proxy recursion, a client processing

3xx class responses MUST NOT add any given URI to the target set more
than once. If the original request had a SIPS URI in the Request-

URI, the client MAY choose to recurse to a non-SIPS URI, but SHOULD
inform the user of the redirection to an insecure URI.

Any new request may receive 3xx responses themselves containing
the original URI as a contact. Two locations can be configured to
redirect to each other. Placing any given URI in the target set

only once prevents infinite redirection loops.

As the target set grows, the client MAY generate new requests to the
URIs in any order. A common mechanism is to order the set by the "q"
parameter value from the Contact header field value. Requests to the
URIs MAY be generated serially or in parallel. One approach is to
process groups of decreasing g-values serially and process the URIs
in each g-value group in parallel. Another is to perform only serial
processing in decreasing g-value order, arbitrarily choosing between
contacts of equal g-value.

If contacting an address in the list results in a failure, as defined

in the next paragraph, the element moves to the next address in the
list, until the list is exhausted. If the list is exhausted, then

the request has failed.

Rosenberg, et. al. Standards Track [Page 43]

RFC 3261 SIP: Session Initiation Protocol June 2002

Failures SHOULD be detected through failure response codes (codes
greater than 399); for network errors the client transaction will

report any transport layer failures to the transaction user. Note

that some response codes (detailed in 8.1.3.5) indicate that the
request can be retried; requests that are reattempted should not be
considered failures.

When a failure for a particular contact address is received, the
client SHOULD try the next contact address. This will involve
creating a new client transaction to deliver a new request.

In order to create a request based on a contact address in a 3xx
response, a UAC MUST copy the entire URI from the target set into the
Request-URI, except for the "method-param" and "header" URI
parameters (see Section 19.1.1 for a definition of these parameters).

It uses the "header" parameters to create header field values for the
new request, overwriting header field values associated with the
redirected request in accordance with the guidelines in Section

19.1.5.

Note that in some instances, header fields that have been
communicated in the contact address may instead append to existing
request header fields in the original redirected request. As a

general rule, if the header field can accept a comma-separated list

of values, then the new header field value MAY be appended to any
existing values in the original redirected request. If the header

field does not accept multiple values, the value in the original
redirected request MAY be overwritten by the header field value
communicated in the contact address. For example, if a contact
address is returned with the following value:

sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

Then any Subject header field in the original redirected request is
overwritten, but the HTTP URL is merely appended to any existing
Call-Info header field values.

It is RECOMMENDED that the UAC reuse the same To, From, and Call-ID
used in the original redirected request, but the UAC MAY also choose

to update the Call-ID header field value for new requests, for

example.

Finally, once the new request has been constructed, it is sent using

a new client transaction, and therefore MUST have a new branch ID in
the top Via field as discussed in Section 8.1.1.7.

Rosenberg, et. al. Standards Track [Page 44]

RFC 3261 SIP: Session Initiation Protocol June 2002

In all other respects, requests sent upon receipt of a redirect
response SHOULD re-use the header fields and bodies of the original
request.

In some instances, Contact header field values may be cached at UAC
temporarily or permanently depending on the status code received and
the presence of an expiration interval; see Sections 21.3.2 and

21.3.3.

8.1.3.5 Processing 4xx Responses

Certain 4xx response codes require specific UA processing,
independent of the method.

If a 401 (Unauthorized) or 407 (Proxy Authentication Required)
response is received, the UAC SHOULD follow the authorization
procedures of Section 22.2 and Section 22.3 to retry the request with
credentials.

If a 413 (Request Entity Too Large) response is received (Section
21.4.11), the request contained a body that was longer than the UAS
was willing to accept. If possible, the UAC SHOULD retry the
request, either omitting the body or using one of a smaller length.

If a 415 (Unsupported Media Type) response is received (Section
21.4.13), the request contained media types not supported by the UAS.
The UAC SHOULD retry sending the request, this time only using
content with types listed in the Accept header field in the response,
with encodings listed in the Accept-Encoding header field in the
response, and with languages listed in the Accept-Language in the
response.

If a 416 (Unsupported URI Scheme) response is received (Section
21.4.14), the Request-URI used a URI scheme not supported by the
server. The client SHOULD retry the request, this time, using a SIP
URI.

If a 420 (Bad Extension) response is received (Section 21.4.15), the

request contained a Require or Proxy-Require header field listing an
option-tag for a feature not supported by a proxy or UAS. The UAC

SHOULD retry the request, this time omitting any extensions listed in
the Unsupported header field in the response.

In all of the above cases, the request is retried by creating a new
request with the appropriate modifications. This new request
constitutes a new transaction and SHOULD have the same value of the
Call-ID, To, and From of the previous request, but the CSeq should
contain a new sequence number that is one higher than the previous.

Rosenberg, et. al. Standards Track [Page 45]

RFC 3261 SIP: Session Initiation Protocol June 2002

With other 4xx responses, including those yet to be defined, a retry
may or may not be possible depending on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there is a
set of processing rules that are followed, independent of the method.
Section 12 gives guidance on how a UAS can tell whether a request is
inside or outside of a dialog.

Note that request processing is atomic. If a request is accepted,
all state changes associated with it MUST be performed. Ifitis
rejected, all state changes MUST NOT be performed.

UASs SHOULD process the requests in the order of the steps that
follow in this section (that is, starting with authentication, then
inspecting the method, the header fields, and so on throughout the
remainder of this section).

8.2.1 Method Inspection

Once a request is authenticated (or authentication is skipped), the
UAS MUST inspect the method of the request. If the UAS recognizes
but does not support the method of a request, it MUST generate a 405
(Method Not Allowed) response. Procedures for generating responses
are described in Section 8.2.6. The UAS MUST also add an Allow
header field to the 405 (Method Not Allowed) response. The Allow
header field MUST list the set of methods supported by the UAS
generating the message. The Allow header field is presented in
Section 20.5.

If the method is one supported by the server, processing continues.
8.2.2 Header Inspection

If a UAS does not understand a header field in a request (that is,

the header field is not defined in this specification or in any

supported extension), the server MUST ignore that header field and
continue processing the message. A UAS SHOULD ignore any malformed
header fields that are not necessary for processing requests.

8.2.2.1 To and Request-URI

The To header field identifies the original recipient of the request
designated by the user identified in the From field. The original
recipient may or may not be the UAS processing the request, due to
call forwarding or other proxy operations. A UAS MAY apply any
policy it wishes to determine whether to accept requests when the To

Rosenberg, et. al. Standards Track [Page 46]

RFC 3261 SIP: Session Initiation Protocol June 2002

header field is not the identity of the UAS. However, it is

RECOMMENDED that a UAS accept requests even if they do not recognize
the URI scheme (for example, a tel: URI) in the To header field, or

if the To header field does not address a known or current user of

this UAS. If, on the other hand, the UAS decides to reject the

request, it SHOULD generate a response with a 403 (Forbidden) status
code and pass it to the server transaction for transmission.

However, the Request-URI identifies the UAS that is to process the
request. If the Request-URI uses a scheme not supported by the UAS,
it SHOULD reject the request with a 416 (Unsupported URI Scheme)
response. If the Request-URI does not identify an address that the
UAS is willing to accept requests for, it SHOULD reject the request
with a 404 (Not Found) response. Typically, a UA that uses the
REGISTER method to bind its address-of-record to a specific contact
address will see requests whose Request-URI equals that contact
address. Other potential sources of received Request-URIs include
the Contact header fields of requests and responses sent by the UA
that establish or refresh dialogs.

8.2.2.2 Merged Requests

If the request has no tag in the To header field, the UAS core MUST
check the request against ongoing transactions. If the From tag,
Call-ID, and CSeq exactly match those associated with an ongoing
transaction, but the request does not match that transaction (based
on the matching rules in Section 17.2.3), the UAS core SHOULD
generate a 482 (Loop Detected) response and pass it to the server
transaction.

The same request has arrived at the UAS more than once, following
different paths, most likely due to forking. The UAS processes

the first such request received and responds with a 482 (Loop
Detected) to the rest of them.

8.2.2.3 Require

Assuming the UAS decides that it is the proper element to process the
request, it examines the Require header field, if present.

The Require header field is used by a UAC to tell a UAS about SIP
extensions that the UAC expects the UAS to support in order to
process the request properly. Its format is described in Section

20.32. If a UAS does not understand an option-tag listed in a

Require header field, it MUST respond by generating a response with
status code 420 (Bad Extension). The UAS MUST add an Unsupported
header field, and list in it those options it does not understand

amongst those in the Require header field of the request.

Rosenberg, et. al. Standards Track [Page 47]

RFC 3261 SIP: Session Initiation Protocol June 2002

Note that Require and Proxy-Require MUST NOT be used in a SIP CANCEL
request, or in an ACK request sent for a non-2xx response. These
header fields MUST be ignored if they are present in these requests.

An ACK request for a 2xx response MUST contain only those Require and
Proxy-Require values that were present in the initial request.

Example:

UAC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: 100rel

UAS->UAC: SIP/2.0 420 Bad Extension
Unsupported: 100rel

This behavior ensures that the client-server interaction will
proceed without delay when all options are understood by both
sides, and only slow down if options are not understood (as in the
example above). For a well-matched client-server pair, the
interaction proceeds quickly, saving a round-trip often required

by negotiation mechanisms. In addition, it also removes ambiguity
when the client requires features that the server does not
understand. Some features, such as call handling fields, are only
of interest to end systems.

8.2.3 Content Processing

Assuming the UAS understands any extensions required by the client,
the UAS examines the body of the message, and the header fields that
describe it. If there are any bodies whose type (indicated by the
Content-Type), language (indicated by the Content-Language) or
encoding (indicated by the Content-Encoding) are not understood, and
that body part is not optional (as indicated by the Content-

Disposition header field), the UAS MUST reject the request with a 415
(Unsupported Media Type) response. The response MUST contain an
Accept header field listing the types of all bodies it understands,

in the event the request contained bodies of types not supported by

the UAS. If the request contained content encodings not understood

by the UAS, the response MUST contain an Accept-Encoding header field
listing the encodings understood by the UAS. If the request

contained content with languages not understood by the UAS, the
response MUST contain an Accept-Language header field indicating the
languages understood by the UAS. Beyond these checks, body handling
depends on the method and type. For further information on the
processing of content-specific header fields, see Section 7.4 as well

as Section 20.11 through 20.15.

Rosenberg, et. al. Standards Track [Page 48]

RFC 3261 SIP: Session Initiation Protocol June 2002

8.2.4 Applying Extensions

A UAS that wishes to apply some extension when generating the
response MUST NOT do so unless support for that extension is
indicated in the Supported header field in the request. If the

desired extension is not supported, the server SHOULD rely only on
baseline SIP and any other extensions supported by the client. In

rare circumstances, where the server cannot process the request
without the extension, the server MAY send a 421 (Extension Required)
response. This response indicates that the proper response cannot be
generated without support of a specific extension. The needed
extension(s) MUST be included in a Require header field in the
response. This behavior is NOT RECOMMENDED, as it will generally
break interoperability.

Any extensions applied to a non-421 response MUST be listed in a
Require header field included in the response. Of course, the server
MUST NOT apply extensions not listed in the Supported header field in
the request. As a result of this, the Require header field in a

response will only ever contain option tags defined in standards-

track RFCs.

8.2.5 Processing the Request

Assuming all of the checks in the previous subsections are passed,

the UAS processing becomes method-specific. Section 10 covers the
REGISTER request, Section 11 covers the OPTIONS request, Section 13
covers the INVITE request, and Section 15 covers the BYE request.

8.2.6 Generating the Response

When a UAS wishes to construct a response to a request, it follows
the general procedures detailed in the following subsections.
Additional behaviors specific to the response code in question, which
are not detailed in this section, may also be required.

Once all procedures associated with the creation of a response have
been completed, the UAS hands the response back to the server
transaction from which it received the request.

8.2.6.1 Sending a Provisional Response
One largely non-method-specific guideline for the generation of
responses is that UASs SHOULD NOT issue a provisional response for a

non-INVITE request. Rather, UASs SHOULD generate a final response to
a non-INVITE request as soon as possible.

Rosenberg, et. al. Standards Track [Page 49]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a 100 (Trying) response is generated, any Timestamp header field
present in the request MUST be copied into this 100 (Trying)

response. If there is a delay in generating the response, the UAS
SHOULD add a delay value into the Timestamp value in the response.
This value MUST contain the difference between the time of sending of
the response and receipt of the request, measured in seconds.

8.2.6.2 Headers and Tags

The From field of the response MUST equal the From header field of
the request. The Call-ID header field of the response MUST equal the
Call-ID header field of the request. The CSeq header field of the
response MUST equal the CSeq field of the request. The Via header
field values in the response MUST equal the Via header field values

in the request and MUST maintain the same ordering.

If a request contained a To tag in the request, the To header field

in the response MUST equal that of the request. However, if the To
header field in the request did not contain a tag, the URI in the To
header field in the response MUST equal the URI in the To header
field; additionally, the UAS MUST add a tag to the To header field in
the response (with the exception of the 100 (Trying) response, in
which a tag MAY be present). This serves to identify the UAS that is
responding, possibly resulting in a component of a dialog ID. The
same tag MUST be used for all responses to that request, both final
and provisional (again excepting the 100 (Trying)). Procedures for
the generation of tags are defined in Section 19.3.

8.2.7 Stateless UAS Behavior

A stateless UAS is a UAS that does not maintain transaction state.

It replies to requests normally, but discards any state that would
ordinarily be retained by a UAS after a response has been sent. If a
stateless UAS receives a retransmission of a request, it regenerates
the response and resends it, just as if it were replying to the first
instance of the request. A UAS cannot be stateless unless the request
processing for that method would always result in the same response
if the requests are identical. This rules out stateless registrars,

for example. Stateless UASs do not use a transaction layer; they
receive requests directly from the transport layer and send responses
directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated
requests for which a challenge response is issued. If
unauthenticated requests were handled statefully, then malicious
floods of unauthenticated requests could create massive amounts of

Rosenberg, et. al. Standards Track [Page 50]

RFC 3261 SIP: Session Initiation Protocol June 2002

transaction state that might slow or completely halt call processing
in a UAS, effectively creating a denial of service condition; for
more information see Section 26.1.5.

The most important behaviors of a stateless UAS are the following:
0 A stateless UAS MUST NOT send provisional (1xx) responses.
0 A stateless UAS MUST NOT retransmit responses.

0 A stateless UAS MUST ignore ACK requests.
0 A stateless UAS MUST ignore CANCEL requests.

o To header tags MUST be generated for responses in a stateless
manner - in a manner that will generate the same tag for the
same request consistently. For information on tag construction
see Section 19.3.

In all other respects, a stateless UAS behaves in the same manner as
a stateful UAS. A UAS can operate in either a stateful or stateless
mode for each new request.

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing
load on proxy servers that are responsible for routing requests, and
improve signaling path robustness, by relying on redirection.

Redirection allows servers to push routing information for a request
back in a response to the client, thereby taking themselves out of
the loop of further messaging for this transaction while still aiding

in locating the target of the request. When the originator of the
request receives the redirection, it will send a new request based on
the URI(s) it has received. By propagating URIs from the core of the
network to its edges, redirection allows for considerable network
scalability.

A redirect server is logically constituted of a server transaction

layer and a transaction user that has access to a location service of
some kind (see Section 10 for more on registrars and location
services). This location service is effectively a database

containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After

receiving a request other than CANCEL, the server either refuses the
request or gathers the list of alternative locations from the

Rosenberg, et. al. Standards Track [Page 51]

RFC 3261 SIP: Session Initiation Protocol June 2002

location service and returns a final response of class 3xx. For
well-formed CANCEL requests, it SHOULD return a 2xx response. This
response ends the SIP transaction. The redirect server maintains
transaction state for an entire SIP transaction. It is the

responsibility of clients to detect forwarding loops between redirect
servers.

When a redirect server returns a 3xx response to a request, it
populates the list of (one or more) alternative locations into the
Contact header field. An "expires" parameter to the Contact header
field values may also be supplied to indicate the lifetime of the
Contact data.

The Contact header field contains URIs giving the new locations or
user names to try, or may simply specify additional transport
parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily)
response may also give the same location and username that was
targeted by the initial request but specify additional transport
parameters such as a different server or multicast address to try, or

a change of SIP transport from UDP to TCP or vice versa.

However, redirect servers MUST NOT redirect a request to a URI equal
to the one in the Request-URI; instead, provided that the URI does

not point to itself, the server MAY proxy the request to the

destination URI, or MAY reject it with a 404.

If a client is using an outbound proxy, and that proxy actually
redirects requests, a potential arises for infinite redirection
loops.

Note that a Contact header field value MAY also refer to a different
resource than the one originally called. For example, a SIP call
connected to PSTN gateway may need to deliver a special informational
announcement such as "The number you have dialed has been changed."
A Contact response header field can contain any suitable URI

indicating where the called party can be reached, not limited to SIP

URIs. For example, it could contain URIs for phones, fax, or irc (if

they were defined) or a mailto: (RFC 2368 [32]) URL. Section 26.4.4
discusses implications and limitations of redirecting a SIPS URI to a
non-SIPS URI.

The "expires" parameter of a Contact header field value indicates how
long the URI is valid. The value of the parameter is a number
indicating seconds. If this parameter is not provided, the value of

the Expires header field determines how long the URI is valid.
Malformed values SHOULD be treated as equivalent to 3600.

Rosenberg, et. al. Standards Track [Page 52]

RFC 3261 SIP: Session Initiation Protocol June 2002

This provides a modest level of backwards compatibility with RFC
2543, which allowed absolute times in this header field. If an
absolute time is received, it will be treated as malformed, and
then default to 3600.

Redirect servers MUST ignore features that are not understood
(including unrecognized header fields, any unknown option tags in
Require, or even method names) and proceed with the redirection of
the request in question.

9 Canceling a Request

The previous section has discussed general UA behavior for generating
requests and processing responses for requests of all methods. In
this section, we discuss a general purpose method, called CANCEL.

The CANCEL request, as the name implies, is used to cancel a previous
request sent by a client. Specifically, it asks the UAS to cease
processing the request and to generate an error response to that
request. CANCEL has no effect on a request to which a UAS has
already given a final response. Because of this, it is most useful

to CANCEL requests to which it can take a server long time to
respond. For this reason, CANCEL is best for INVITE requests, which
can take a long time to generate a response. In that usage, a UAS
that receives a CANCEL request for an INVITE, but has not yet sent a
final response, would "stop ringing", and then respond to the INVITE
with a specific error response (a 487).

CANCEL requests can be constructed and sent by both proxies and user
agent clients. Section 15 discusses under what conditions a UAC

would CANCEL an INVITE request, and Section 16.10 discusses proxy
usage of CANCEL.

A stateful proxy responds to a CANCEL, rather than simply forwarding
a response it would receive from a downstream element. For that
reason, CANCEL is referred to as a "hop-by-hop" request, since it is
responded to at each stateful proxy hop.

9.1 Client Behavior

A CANCEL request SHOULD NOT be sent to cancel a request other than
INVITE.

Since requests other than INVITE are responded to immediately,
sending a CANCEL for a non-INVITE request would always create a
race condition.

Rosenberg, et. al. Standards Track [Page 53]

RFC 3261 SIP: Session Initiation Protocol June 2002

The following procedures are used to construct a CANCEL request. The
Request-URI, Call-ID, To, the numeric part of CSeq, and From header
fields in the CANCEL request MUST be identical to those in the
request being cancelled, including tags. A CANCEL constructed by a
client MUST have only a single Via header field value matching the

top Via value in the request being cancelled. Using the same values
for these header fields allows the CANCEL to be matched with the
request it cancels (Section 9.2 indicates how such matching occurs).
However, the method part of the CSeq header field MUST have a value
of CANCEL. This allows it to be identified and processed as a
transaction in its own right (See Section 17).

If the request being cancelled contains a Route header field, the
CANCEL request MUST include that Route header field's values.

This is needed so that stateless proxies are able to route CANCEL
requests properly.

The CANCEL request MUST NOT contain any Require or Proxy-Require
header fields.

Once the CANCEL is constructed, the client SHOULD check whether it
has received any response (provisional or final) for the request
being cancelled (herein referred to as the "original request”).

If no provisional response has been received, the CANCEL request MUST
NOT be sent; rather, the client MUST wait for the arrival of a

provisional response before sending the request. If the original

request has generated a final response, the CANCEL SHOULD NOT be
sent, as it is an effective no-op, since CANCEL has no effect on
requests that have already generated a final response. When the

client decides to send the CANCEL, it creates a client transaction

for the CANCEL and passes it the CANCEL request along with the
destination address, port, and transport. The destination address,

port, and transport for the CANCEL MUST be identical to those used to
send the original request.

If it was allowed to send the CANCEL before receiving a response
for the previous request, the server could receive the CANCEL
before the original request.

Note that both the transaction corresponding to the original request
and the CANCEL transaction will complete independently. However, a
UAC canceling a request cannot rely on receiving a 487 (Request
Terminated) response for the original request, as an RFC 2543-
compliant UAS will not generate such a response. If there is no

final response for the original request in 64*T1 seconds (T1 is

Rosenberg, et. al. Standards Track [Page 54]

RFC 3261 SIP: Session Initiation Protocol June 2002

defined in Section 17.1.1.1), the client SHOULD then consider the
original transaction cancelled and SHOULD destroy the client
transaction handling the original request.

9.2 Server Behavior

The CANCEL method requests that the TU at the server side cancel a
pending transaction. The TU determines the transaction to be
cancelled by taking the CANCEL request, and then assuming that the
request method is anything but CANCEL or ACK and applying the
transaction matching procedures of Section 17.2.3. The matching
transaction is the one to be cancelled.

The processing of a CANCEL request at a server depends on the type of
server. A stateless proxy will forward it, a stateful proxy might

respond to it and generate some CANCEL requests of its own, and a UAS
will respond to it. See Section 16.10 for proxy treatment of CANCEL.

A UAS first processes the CANCEL request according to the general UAS
processing described in Section 8.2. However, since CANCEL requests
are hop-by-hop and cannot be resubmitted, they cannot be challenged

by the server in order to get proper credentials in an Authorization

header field. Note also that CANCEL requests do not contain a

Require header field.

If the UAS did not find a matching transaction for the CANCEL
according to the procedure above, it SHOULD respond to the CANCEL
with a 481 (Call Leg/Transaction Does Not Exist). If the transaction

for the original request still exists, the behavior of the UAS on

receiving a CANCEL request depends on whether it has already sent a
final response for the original request. If it has, the CANCEL

request has no effect on the processing of the original request, no
effect on any session state, and no effect on the responses generated
for the original request. If the UAS has not issued a final response

for the original request, its behavior depends on the method of the
original request. If the original request was an INVITE, the UAS
SHOULD immediately respond to the INVITE with a 487 (Request
Terminated). A CANCEL request has no impact on the processing of
transactions with any other method defined in this specification.

Regardless of the method of the original request, as long as the

CANCEL matched an existing transaction, the UAS answers the CANCEL
request itself with a 200 (OK) response. This response is

constructed following the procedures described in Section 8.2.6

noting that the To tag of the response to the CANCEL and the To tag

in the response to the original request SHOULD be the same. The
response to CANCEL is passed to the server transaction for
transmission.

Rosenberg, et. al. Standards Track [Page 55]

RFC 3261 SIP: Session Initiation Protocol June 2002

10 Registrations
10.1 Overview

SIP offers a discovery capability. If a user wants to initiate a

session with another user, SIP must discover the current host(s) at
which the destination user is reachable. This discovery process is
frequently accomplished by SIP network elements such as proxy servers
and redirect servers which are responsible for receiving a request,
determining where to send it based on knowledge of the location of

the user, and then sending it there. To do this, SIP network

elements consult an abstract service known as a location service,

which provides address bindings for a particular domain. These
address bindings map an incoming SIP or SIPS URI, sip:bob@biloxi.com,
for example, to one or more URIs that are somehow "“closer" to the
desired user, sip:bob@engineering.biloxi.com, for example.

Ultimately, a proxy will consult a location service that maps a

received URI to the user agent(s) at which the desired recipient is
currently residing.

Registration creates bindings in a location service for a particular
domain that associates an address-of-record URI with one or more
contact addresses. Thus, when a proxy for that domain receives a
request whose Request-URI matches the address-of-record, the proxy
will forward the request to the contact addresses registered to that
address-of-record. Generally, it only makes sense to register an
address-of-record at a domain’s location service when requests for
that address-of-record would be routed to that domain. In most
cases, this means that the domain of the registration will need to
match the domain in the URI of the address-of-record.

There are many ways by which the contents of the location service can
be established. One way is administratively. In the above example,
Bob is known to be a member of the engineering department through
access to a corporate database. However, SIP provides a mechanism
for a UA to create a binding explicitly. This mechanism is known as
registration.

Registration entails sending a REGISTER request to a special type of
UAS known as a registrar. A registrar acts as the front end to the
location service for a domain, reading and writing mappings based on
the contents of REGISTER requests. This location service is then
typically consulted by a proxy server that is responsible for routing
requests for that domain.

An illustration of the overall registration process is given in

Figure 2. Note that the registrar and proxy server are logical roles
that can be played by a single device in a network; for purposes of

Rosenberg, et. al. Standards Track [Page 56]

RFC 3261 SIP: Session Initiation Protocol June 2002

clarity the two are separated in this illustration. Also note that
UAs may send requests through a proxy server in order to reach a
registrar if the two are separate elements.

SIP does not mandate a particular mechanism for implementing the
location service. The only requirement is that a registrar for some
domain MUST be able to read and write data to the location service,
and a proxy or a redirect server for that domain MUST be capable of
reading that same data. A registrar MAY be co-located with a
particular SIP proxy server for the same domain.

10.2 Constructing the REGISTER Request

REGISTER requests add, remove, and query bindings. A REGISTER
request can add a new binding between an address-of-record and one or
more contact addresses. Registration on behalf of a particular
address-of-record can be performed by a suitably authorized third

party. A client can also remove previous bindings or query to

determine which bindings are currently in place for an address-of-
record.

Except as noted, the construction of the REGISTER request and the
behavior of clients sending a REGISTER request is identical to the
general UAC behavior described in Section 8.1 and Section 17.1.

A REGISTER request does not establish a dialog. A UAC MAY include a
Route header field in a REGISTER request based on a pre-existing

route set as described in Section 8.1. The Record-Route header field

has no meaning in REGISTER requests or responses, and MUST be ignored
if present. In particular, the UAC MUST NOT create a new route set

based on the presence or absence of a Record-Route header field in

any response to a REGISTER request.

The following header fields, except Contact, MUST be included in a
REGISTER request. A Contact header field MAY be included:

Request-URI: The Request-URI names the domain of the location
service for which the registration is meant (for example,
"sip:chicago.com"). The "userinfo" and "@" components of the
SIP URI MUST NOT be present.

To: The To header field contains the address of record whose
registration is to be created, queried, or modified. The To
header field and the Request-URI field typically differ, as
the former contains a user name. This address-of-record MUST
be a SIP URI or SIPS URI.

Rosenberg, et. al. Standards Track [Page 57]

RFC 3261 SIP: Session Initiation Protocol June 2002

From: The From header field contains the address-of-record of the
person responsible for the registration. The value is the
same as the To header field unless the request is a third-
party registration.

Call-ID: All registrations from a UAC SHOULD use the same Call-ID
header field value for registrations sent to a particular
registrar.

If the same client were to use different Call-ID values, a
registrar could not detect whether a delayed REGISTER request
might have arrived out of order.

CSeq: The CSeq value guarantees proper ordering of REGISTER
requests. A UA MUST increment the CSeq value by one for each
REGISTER request with the same Call-ID.

Contact: REGISTER requests MAY contain a Contact header field with
zero or more values containing address bindings.

UAs MUST NOT send a new registration (that is, containing new Contact
header field values, as opposed to a retransmission) until they have
received a final response from the registrar for the previous one or

the previous REGISTER request has timed out.

Rosenberg, et. al. Standards Track [Page 58]

RFC 3261 SIP: Session Initiation Protocol June 2002

bob
N
| UA|
||
R —
|
[3)INVITE
| carol@chicago.com
chicago.com oo + \%
+ommmme + 2)Store|Location|4)Query +-----+
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
R A + + +======= P +
A 5)Resp |
| I
| I
1)REGISTER| |
| |
+--mt |
| UA |< +
cube2214a| | 6)INVITE
+----+ carol@cube2214a.chicago.com
carol

Figure 2: REGISTER example

The following Contact header parameters have a special meaning in
REGISTER requests:

action: The "action" parameter from RFC 2543 has been deprecated.
UACs SHOULD NOT use the "action" parameter.

expires: The "expires" parameter indicates how long the UA would
like the binding to be valid. The value is a number
indicating seconds. If this parameter is not provided, the
value of the Expires header field is used instead.
Implementations MAY treat values larger than 2**32-1
(4294967295 seconds or 136 years) as equivalent to 2**32-1.
Malformed values SHOULD be treated as equivalent to 3600.

10.2.1 Adding Bindings

The REGISTER request sent to a registrar includes the contact
address(es) to which SIP requests for the address-of-record should be
forwarded. The address-of-record is included in the To header field

of the REGISTER request.

Rosenberg, et. al. Standards Track [Page 59]

RFC 3261 SIP: Session Initiation Protocol June 2002

The Contact header field values of the request typically consist of

SIP or SIPS URIs that identify particular SIP endpoints (for example,
"sip:carol@cube2214a.chicago.com”), but they MAY use any URI scheme.
A SIP UA can choose to register telephone numbers (with the tel URL,
RFC 2806 [9]) or email addresses (with a mailto URL, RFC 2368 [32])

as Contacts for an address-of-record, for example.

For example, Carol, with address-of-record "sip:carol@chicago.com"”,
would register with the SIP registrar of the domain chicago.com. Her
registrations would then be used by a proxy server in the chicago.com
domain to route requests for Carol’'s address-of-record to her SIP
endpoint.

Once a client has established bindings at a registrar, it MAY send
subsequent registrations containing new bindings or modifications to
existing bindings as necessary. The 2xx response to the REGISTER
request will contain, in a Contact header field, a complete list of
bindings that have been registered for this address-of-record at this
registrar.

If the address-of-record in the To header field of a REGISTER request

is a SIPS URI, then any Contact header field values in the request
SHOULD also be SIPS URIs. Clients should only register non-SIPS URIs
under a SIPS address-of-record when the security of the resource
represented by the contact address is guaranteed by other means.

This may be applicable to URIs that invoke protocols other than SIP,

or SIP devices secured by protocols other than TLS.

Registrations do not need to update all bindings. Typically, a UA
only updates its own contact addresses.

10.2.1.1 Setting the Expiration Interval of Contact Addresses

When a client sends a REGISTER request, it MAY suggest an expiration
interval that indicates how long the client would like the

registration to be valid. (As described in Section 10.3, the

registrar selects the actual time interval based on its local

policy.)

There are two ways in which a client can suggest an expiration
interval for a binding: through an Expires header field or an

"expires" Contact header parameter. The latter allows expiration
intervals to be suggested on a per-binding basis when more than one
binding is given in a single REGISTER request, whereas the former
suggests an expiration interval for all Contact header field values
that do not contain the "expires" parameter.

Rosenberg, et. al. Standards Track [Page 60]

RFC 3261 SIP: Session Initiation Protocol June 2002

If neither mechanism for expressing a suggested expiration time is
present in a REGISTER, the client is indicating its desire for the
server to choose.

10.2.1.2 Preferences among Contact Addresses

If more than one Contact is sent in a REGISTER request, the
registering UA intends to associate all of the URIs in these Contact
header field values with the address-of-record present in the To
field. This list can be prioritized with the "g" parameter in the
Contact header field. The "g" parameter indicates a relative
preference for the particular Contact header field value compared to
other bindings for this address-of-record. Section 16.6 describes

how a proxy server uses this preference indication.
10.2.2 Removing Bindings

Registrations are soft state and expire unless refreshed, but can

also be explicitly removed. A client can attempt to influence the
expiration interval selected by the registrar as described in Section
10.2.1. A UA requests the immediate removal of a binding by
specifying an expiration interval of "0" for that contact address in

a REGISTER request. UAs SHOULD support this mechanism so that
bindings can be removed before their expiration interval has passed.

The REGISTER-specific Contact header field value of "*" applies to
all registrations, but it MUST NOT be used unless the Expires header
field is present with a value of "0".

Use of the ™" Contact header field value allows a registering UA
to remove all bindings associated with an address-of-record
without knowing their precise values.

10.2.3 Fetching Bindings
A success response to any REGISTER request contains the complete list
of existing bindings, regardless of whether the request contained a
Contact header field. If no Contact header field is present in a
REGISTER request, the list of bindings is left unchanged.

10.2.4 Refreshing Bindings
Each UA is responsible for refreshing the bindings that it has

previously established. A UA SHOULD NOT refresh bindings set up by
other UAs.

Rosenberg, et. al. Standards Track [Page 61]

RFC 3261 SIP: Session Initiation Protocol June 2002

The 200 (OK) response from the registrar contains a list of Contact
fields enumerating all current bindings. The UA compares each
contact address to see if it created the contact address, using
comparison rules in Section 19.1.4. If so, it updates the expiration
time interval according to the expires parameter or, if absent, the
Expires field value. The UA then issues a REGISTER request for each
of its bindings before the expiration interval has elapsed. It MAY
combine several updates into one REGISTER request.

A UA SHOULD use the same Call-ID for all registrations during a
single boot cycle. Registration refreshes SHOULD be sent to the same
network address as the original registration, unless redirected.

10.2.5 Setting the Internal Clock

If the response for a REGISTER request contains a Date header field,
the client MAY use this header field to learn the current time in
order to set any internal clocks.

10.2.6 Discovering a Registrar

UAs can use three ways to determine the address to which to send
registrations: by configuration, using the address-of-record, and
multicast. A UA can be configured, in ways beyond the scope of this
specification, with a registrar address. If there is no configured
registrar address, the UA SHOULD use the host part of the address-
of-record as the Request-URI and address the request there, using the
normal SIP server location mechanisms [4]. For example, the UA for
the user "sip:carol@chicago.com” addresses the REGISTER request to
"sip:chicago.com".

Finally, a UA can be configured to use multicast. Multicast
registrations are addressed to the well-known "all SIP servers"
multicast address "sip.mcast.net" (224.0.1.75 for IPv4). No well-
known IPv6 multicast address has been allocated; such an allocation
will be documented separately when needed. SIP UAs MAY listen to
that address and use it to become aware of the location of other
local users (see [33]); however, they do not respond to the request.

Multicast registration may be inappropriate in some environments,
for example, if multiple businesses share the same local area
network.
10.2.7 Transmitting a Request
Once the REGISTER method has been constructed, and the destination of

the message identified, UACs follow the procedures described in
Section 8.1.2 to hand off the REGISTER to the transaction layer.

Rosenberg, et. al. Standards Track [Page 62]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the transaction layer returns a timeout error because the REGISTER
yielded no response, the UAC SHOULD NOT immediately re-attempt a
registration to the same registrar.

An immediate re-attempt is likely to also timeout. Waiting some
reasonable time interval for the conditions causing the timeout to

be corrected reduces unnecessary load on the network. No specific
interval is mandated.

10.2.8 Error Responses

If a UA receives a 423 (Interval Too Brief) response, it MAY retry
the registration after making the expiration interval of all contact
addresses in the REGISTER request equal to or greater than the
expiration interval within the Min-Expires header field of the 423
(Interval Too Brief) response.

10.3 Processing REGISTER Requests

A registrar is a UAS that responds to REGISTER requests and maintains
a list of bindings that are accessible to proxy servers and redirect

servers within its administrative domain. A registrar handles

requests according to Section 8.2 and Section 17.2, but it accepts

only REGISTER requests. A registrar MUST not generate 6xx responses.

A registrar MAY redirect REGISTER requests as appropriate. One
common usage would be for a registrar listening on a multicast
interface to redirect multicast REGISTER requests to its own unicast
interface with a 302 (Moved Temporarily) response.

Registrars MUST ignore the Record-Route header field if it is
included in a REGISTER request. Registrars MUST NOT include a
Record-Route header field in any response to a REGISTER request.

A registrar might receive a request that traversed a proxy which
treats REGISTER as an unknown request and which added a Record-
Route header field value.

A registrar has to know (for example, through configuration) the set

of domain(s) for which it maintains bindings. REGISTER requests MUST
be processed by a registrar in the order that they are received.
REGISTER requests MUST also be processed atomically, meaning that a
particular REGISTER request is either processed completely or not at

all. Each REGISTER message MUST be processed independently of any
other registration or binding changes.

Rosenberg, et. al. Standards Track [Page 63]

RFC 3261 SIP: Session Initiation Protocol June 2002

When receiving a REGISTER request, a registrar follows these steps:

1. The registrar inspects the Request-URI to determine whether it
has access to bindings for the domain identified in the
Request-URI. If not, and if the server also acts as a proxy
server, the server SHOULD forward the request to the addressed
domain, following the general behavior for proxying messages
described in Section 16.

2. To guarantee that the registrar supports any necessary
extensions, the registrar MUST process the Require header field
values as described for UASs in Section 8.2.2.

3. A registrar SHOULD authenticate the UAC. Mechanisms for the
authentication of SIP user agents are described in Section 22.
Registration behavior in no way overrides the generic
authentication framework for SIP. If no authentication
mechanism is available, the registrar MAY take the From address
as the asserted identity of the originator of the request.

4. The registrar SHOULD determine if the authenticated user is
authorized to modify registrations for this address-of-record.
For example, a registrar might consult an authorization
database that maps user names to a list of addresses-of-record
for which that user has authorization to modify bindings. If
the authenticated user is not authorized to modify bindings,
the registrar MUST return a 403 (Forbidden) and skip the
remaining steps.

In architectures that support third-party registration, one
entity may be responsible for updating the registrations
associated with multiple addresses-of-record.

5. The registrar extracts the address-of-record from the To header
field of the request. If the address-of-record is not valid
for the domain in the Request-URI, the registrar MUST send a
404 (Not Found) response and skip the remaining steps. The URI
MUST then be converted to a canonical form. To do that, all
URI parameters MUST be removed (including the user-param), and
any escaped characters MUST be converted to their unescaped
form. The result serves as an index into the list of bindings.

Rosenberg, et. al. Standards Track [Page 64]

RFC 3261 SIP: Session Initiation Protocol June 2002

6. The registrar checks whether the request contains the Contact
header field. If not, it skips to the last step. If the
Contact header field is present, the registrar checks if there
is one Contact field value that contains the special value "*"
and an Expires field. If the request has additional Contact
fields or an expiration time other than zero, the request is
invalid, and the server MUST return a 400 (Invalid Request) and
skip the remaining steps. If not, the registrar checks whether
the Call-ID agrees with the value stored for each binding. If
not, it MUST remove the binding. If it does agree, it MUST
remove the binding only if the CSeq in the request is higher
than the value stored for that binding. Otherwise, the update
MUST be aborted and the request fails.

7. The registrar now processes each contact address in the Contact
header field in turn. For each address, it determines the
expiration interval as follows:

- If the field value has an "expires" parameter, that value
MUST be taken as the requested expiration.

- If there is no such parameter, but the request has an
Expires header field, that value MUST be taken as the
requested expiration.

- If there is neither, a locally-configured default value MUST
be taken as the requested expiration.

The registrar MAY choose an expiration less than the requested
expiration interval. If and only if the requested expiration
interval is greater than zero AND smaller than one hour AND
less than a registrar-configured minimum, the registrar MAY
reject the registration with a response of 423 (Interval Too
Brief). This response MUST contain a Min-Expires header field
that states the minimum expiration interval the registrar is
willing to honor. It then skips the remaining steps.

Allowing the registrar to set the registration interval

protects it against excessively frequent registration refreshes
while limiting the state that it needs to maintain and
decreasing the likelihood of registrations going stale. The
expiration interval of a registration is frequently used in the
creation of services. An example is a follow-me service, where
the user may only be available at a terminal for a brief
period. Therefore, registrars should accept brief
registrations; a request should only be rejected if the

interval is so short that the refreshes would degrade registrar
performance.

Rosenberg, et. al. Standards Track [Page 65]

RFC 3261 SIP: Session Initiation Protocol June 2002

For each address, the registrar then searches the list of
current bindings using the URI comparison rules. If the
binding does not exist, it is tentatively added. If the

binding does exist, the registrar checks the Call-ID value. If
the Call-ID value in the existing binding differs from the
Call-ID value in the request, the binding MUST be removed if
the expiration time is zero and updated otherwise. If they are
the same, the registrar compares the CSeq value. If the value
is higher than that of the existing binding, it MUST update or
remove the binding as above. If not, the update MUST be
aborted and the request fails.

This algorithm ensures that out-of-order requests from the same
UA are ignored.

Each binding record records the Call-ID and CSeq values from
the request.

The binding updates MUST be committed (that is, made visible to
the proxy or redirect server) if and only if all binding

updates and additions succeed. If any one of them fails (for
example, because the back-end database commit failed), the
request MUST fail with a 500 (Server Error) response and all
tentative binding updates MUST be removed.

8. The registrar returns a 200 (OK) response. The response MUST
contain Contact header field values enumerating all current
bindings. Each Contact value MUST feature an "expires"
parameter indicating its expiration interval chosen by the
registrar. The response SHOULD include a Date header field.

11 Querying for Capabilities

The SIP method OPTIONS allows a UA to query another UA or a proxy
server as to its capabilities. This allows a client to discover

information about the supported methods, content types, extensions,
codecs, etc. without "ringing" the other party. For example, before

a client inserts a Require header field into an INVITE listing an

option that it is not certain the destination UAS supports, the

client can query the destination UAS with an OPTIONS to see if this
option is returned in a Supported header field. All UAs MUST support
the OPTIONS method.

The target of the OPTIONS request is identified by the Request-URI,
which could identify another UA or a SIP server. If the OPTIONS is
addressed to a proxy server, the Request-URI is set without a user
part, similar to the way a Request-URI is set for a REGISTER request.

Rosenberg, et. al. Standards Track [Page 66]

RFC 3261 SIP: Session Initiation Protocol June 2002

Alternatively, a server receiving an OPTIONS request with a Max-
Forwards header field value of 0 MAY respond to the request
regardless of the Request-URI.

This behavior is common with HTTP/1.1. This behavior can be used
as a "traceroute" functionality to check the capabilities of

individual hop servers by sending a series of OPTIONS requests
with incremented Max-Forwards values.

As is the case for general UA behavior, the transaction layer can
return a timeout error if the OPTIONS yields no response. This may
indicate that the target is unreachable and hence unavailable.

An OPTIONS request MAY be sent as part of an established dialog to
guery the peer on capabilities that may be utilized later in the
dialog.

11.1 Construction of OPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP
request as discussed in Section 8.1.1.

A Contact header field MAY be present in an OPTIONS.

An Accept header field SHOULD be included to indicate the type of
message body the UAC wishes to receive in the response. Typically,
this is set to a format that is used to describe the media

capabilities of a UA, such as SDP (application/sdp).

The response to an OPTIONS request is assumed to be scoped to the
Request-URI in the original request. However, only when an OPTIONS
is sent as part of an established dialog is it guaranteed that future
requests will be received by the server that generated the OPTIONS
response.

Example OPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z29hG4bKhjhs8ass877
Max-Forwards: 70

To: <sip:carol@chicago.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 63104 OPTIONS

Contact: <sip:alice@pc33.atlanta.com>

Accept: application/sdp

Content-Length: 0

Rosenberg, et. al. Standards Track [Page 67]

RFC 3261 SIP: Session Initiation Protocol June 2002

11.2 Processing of OPTIONS Request

The response to an OPTIONS is constructed using the standard rules

for a SIP response as discussed in Section 8.2.6. The response code
chosen MUST be the same that would have been chosen had the request
been an INVITE. That is, a 200 (OK) would be returned if the UAS is
ready to accept a call, a 486 (Busy Here) would be returned if the

UAS is busy, etc. This allows an OPTIONS request to be used to
determine the basic state of a UAS, which can be an indication of
whether the UAS will accept an INVITE request.

An OPTIONS request received within a dialog generates a 200 (OK)
response that is identical to one constructed outside a dialog and
does not have any impact on the dialog.

This use of OPTIONS has limitations due to the differences in proxy
handling of OPTIONS and INVITE requests. While a forked INVITE can
result in multiple 200 (OK) responses being returned, a forked
OPTIONS will only result in a single 200 (OK) response, since it is
treated by proxies using the non-INVITE handling. See Section 16.7
for the normative details.

If the response to an OPTIONS is generated by a proxy server, the
proxy returns a 200 (OK), listing the capabilities of the server.
The response does not contain a message body.

Allow, Accept, Accept-Encoding, Accept-Language, and Supported header
fields SHOULD be present in a 200 (OK) response to an OPTIONS
request. If the response is generated by a proxy, the Allow header

field SHOULD be omitted as it is ambiguous since a proxy is method
agnostic. Contact header fields MAY be present in a 200 (OK)

response and have the same semantics as in a 3xx response. That is,
they may list a set of alternative names and methods of reaching the

user. A Warning header field MAY be present.

A message body MAY be sent, the type of which is determined by the
Accept header field in the OPTIONS request (application/sdp is the
default if the Accept header field is not present). If the types

include one that can describe media capabilities, the UAS SHOULD
include a body in the response for that purpose. Details on the
construction of such a body in the case of application/sdp are
described in [13].

Rosenberg, et. al. Standards Track [Page 68]

RFC 3261 SIP: Session Initiation Protocol June 2002

Example OPTIONS response generated by a UAS (corresponding to the
request in Section 11.1):

SIP/2.0 200 OK

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKhjhs8ass877
;received=192.0.2.4

To: <sip:carol@chicago.com>;tag=93810874

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 63104 OPTIONS

Contact: <sip:carol@chicago.com>

Contact: <mailto:carol@chicago.com>

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Accept: application/sdp

Accept-Encoding: gzip

Accept-Language: en

Supported: foo

Content-Type: application/sdp

Content-Length: 274

(SDP not shown)
12 Dialogs

A key concept for a user agent is that of a dialog. A dialog

represents a peer-to-peer SIP relationship between two user agents
that persists for some time. The dialog facilitates sequencing of
messages between the user agents and proper routing of requests
between both of them. The dialog represents a context in which to
interpret SIP messages. Section 8 discussed method independent UA
processing for requests and responses outside of a dialog. This
section discusses how those requests and responses are used to
construct a dialog, and then how subsequent requests and responses
are sent within a dialog.

A dialog is identified at each UA with a dialog ID, which consists of
a Call-ID value, a local tag and a remote tag. The dialog ID at each
UA involved in the dialog is not the same. Specifically, the local
tag at one UA is identical to the remote tag at the peer UA. The
tags are opaque tokens that facilitate the generation of unique
dialog IDs.

A dialog ID is also associated with all responses and with any

request that contains a tag in the To field. The rules for computing

the dialog ID of a message depend on whether the SIP element is a UAC
or UAS. For a UAC, the Call-ID value of the dialog ID is set to the
Call-ID of the message, the remote tag is set to the tag in the To

field of the message, and the local tag is set to the tag in the From

Rosenberg, et. al. Standards Track [Page 69]

RFC 3261 SIP: Session Initiation Protocol June 2002

field of the message (these rules apply to both requests and
responses). As one would expect for a UAS, the Call-ID value of the
dialog ID is set to the Call-ID of the message, the remote tag is set
to the tag in the From field of the message, and the local tag is set
to the tag in the To field of the message.

A dialog contains certain pieces of state needed for further message
transmissions within the dialog. This state consists of the dialog

ID, a local sequence number (used to order requests from the UA to
its peer), a remote sequence number (used to order requests from its
peer to the UA), a local URI, a remote URI, remote target, a boolean
flag called "secure", and a route set, which is an ordered list of
URIs. The route set is the list of servers that need to be traversed
to send a request to the peer. A dialog can also be in the "early"
state, which occurs when it is created with a provisional response,
and then transition to the "confirmed" state when a 2xx final
response arrives. For other responses, or if no response arrives at
all on that dialog, the early dialog terminates.

12.1 Creation of a Dialog

Dialogs are created through the generation of non-failure responses
to requests with specific methods. Within this specification, only

2xx and 101-199 responses with a To tag, where the request was
INVITE, will establish a dialog. A dialog established by a non-final
response to a request is in the "early" state and it is called an

early dialog. Extensions MAY define other means for creating
dialogs. Section 13 gives more details that are specific to the
INVITE method. Here, we describe the process for creation of dialog
state that is not dependent on the method.

UAs MUST assign values to the dialog ID components as described
below.

12.1.1 UAS behavior

When a UAS responds to a request with a response that establishes a
dialog (such as a 2xx to INVITE), the UAS MUST copy all Record-Route
header field values from the request into the response (including the
URIs, URI parameters, and any Record-Route header field parameters,
whether they are known or unknown to the UAS) and MUST maintain the
order of those values. The UAS MUST add a Contact header field to
the response. The Contact header field contains an address where the
UAS would like to be contacted for subsequent requests in the dialog
(which includes the ACK for a 2xx response in the case of an INVITE).
Generally, the host portion of this URI is the IP address or FQDN of

the host. The URI provided in the Contact header field MUST be a SIP
or SIPS URI. If the request that initiated the dialog contained a

Rosenberg, et. al. Standards Track [Page 70]

RFC 3261 SIP: Session Initiation Protocol June 2002

SIPS URI in the Request-URI or in the top Record-Route header field
value, if there was any, or the Contact header field if there was no
Record-Route header field, the Contact header field in the response
MUST be a SIPS URI. The URI SHOULD have global scope (that is, the
same URI can be used in messages outside this dialog). The same way,
the scope of the URI in the Contact header field of the INVITE is not
limited to this dialog either. It can therefore be used in messages

to the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This state MUST be
maintained for the duration of the dialog.

If the request arrived over TLS, and the Request-URI contained a SIPS
URI, the "secure" flag is set to TRUE.

The route set MUST be set to the list of URIs in the Record-Route
header field from the request, taken in order and preserving all URI
parameters. If no Record-Route header field is present in the
request, the route set MUST be set to the empty set. This route set,
even if empty, overrides any pre-existing route set for future
requests in this dialog. The remote target MUST be set to the URI
from the Contact header field of the request.

The remote sequence number MUST be set to the value of the sequence
number in the CSeq header field of the request. The local sequence
number MUST be empty. The call identifier component of the dialog ID
MUST be set to the value of the Call-ID in the request. The local

tag component of the dialog ID MUST be set to the tag in the To field

in the response to the request (which always includes a tag), and the
remote tag component of the dialog ID MUST be set to the tag from the
From field in the request. A UAS MUST be prepared to receive a
request without a tag in the From field, in which case the tag is
considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which
did not mandate From tags.

The remote URI MUST be set to the URI in the From field, and the
local URI MUST be set to the URI in the To field.

12.1.2 UAC Behavior

When a UAC sends a request that can establish a dialog (such as an
INVITE) it MUST provide a SIP or SIPS URI with global scope (i.e.,
the same SIP URI can be used in messages outside this dialog) in the
Contact header field of the request. If the request has a Request-
URI or a topmost Route header field value with a SIPS URI, the
Contact header field MUST contain a SIPS URI.

Rosenberg, et. al. Standards Track [Page 71]

RFC 3261 SIP: Session Initiation Protocol June 2002

When a UAC receives a response that establishes a dialog, it
constructs the state of the dialog. This state MUST be maintained
for the duration of the dialog.

If the request was sent over TLS, and the Request-URI contained a
SIPS URI, the "secure" flag is set to TRUE.

The route set MUST be set to the list of URIs in the Record-Route
header field from the response, taken in reverse order and preserving
all URI parameters. If no Record-Route header field is present in

the response, the route set MUST be set to the empty set. This route
set, even if empty, overrides any pre-existing route set for future
requests in this dialog. The remote target MUST be set to the URI
from the Contact header field of the response.

The local sequence number MUST be set to the value of the sequence
number in the CSeq header field of the request. The remote sequence
number MUST be empty (it is established when the remote UA sends a
request within the dialog). The call identifier component of the

dialog ID MUST be set to the value of the Call-ID in the request.

The local tag component of the dialog ID MUST be set to the tag in

the From field in the request, and the remote tag component of the
dialog ID MUST be set to the tag in the To field of the response. A
UAC MUST be prepared to receive a response without a tag in the To
field, in which case the tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which
did not mandate To tags.

The remote URI MUST be set to the URI in the To field, and the local
URI MUST be set to the URI in the From field.

12.2 Requests within a Dialog

Once a dialog has been established between two UAs, either of them
MAY initiate new transactions as needed within the dialog. The UA
sending the request will take the UAC role for the transaction. The
UA receiving the request will take the UAS role. Note that these may
be different roles than the UAs held during the transaction that
established the dialog.

Requests within a dialog MAY contain Record-Route and Contact header
fields. However, these requests do not cause the dialog's route set

to be modified, although they may modify the remote target URI.
Specifically, requests that are not target refresh requests do not

modify the dialog’s remote target URI, and requests that are target
refresh requests do. For dialogs that have been established with an

Rosenberg, et. al. Standards Track [Page 72]

RFC 3261 SIP: Session Initiation Protocol June 2002

INVITE, the only target refresh request defined is re-INVITE (see
Section 14). Other extensions may define different target refresh
requests for dialogs established in other ways.

Note that an ACK is NOT a target refresh request.

Target refresh requests only update the dialog’s remote target URI,
and not the route set formed from the Record-Route. Updating the
latter would introduce severe backwards compatibility problems with
RFC 2543-compliant systems.

12.2.1 UAC Behavior
12.2.1.1 Generating the Request

A request within a dialog is constructed by using many of the
components of the state stored as part of the dialog.

The URI in the To field of the request MUST be set to the remote URI
from the dialog state. The tag in the To header field of the request
MUST be set to the remote tag of the dialog ID. The From URI of the
request MUST be set to the local URI from the dialog state. The tag

in the From header field of the request MUST be set to the local tag

of the dialog ID. If the value of the remote or local tags is null,

the tag parameter MUST be omitted from the To or From header fields,
respectively.

Usage of the URI from the To and From fields in the original
request within subsequent requests is done for backwards
compatibility with RFC 2543, which used the URI for dialog
identification. In this specification, only the tags are used for
dialog identification. It is expected that mandatory reflection
of the original To and From URI in mid-dialog requests will be
deprecated in a subsequent revision of this specification.

The Call-ID of the request MUST be set to the Call-ID of the dialog.
Requests within a dialog MUST contain strictly monotonically

increasing and contiguous CSeq sequence numbers (increasing-by-one)
in each direction (excepting ACK and CANCEL of course, whose numbers
equal the requests being acknowledged or cancelled). Therefore, if

the local sequence number is not empty, the value of the local

sequence number MUST be incremented by one, and this value MUST be
placed into the CSeq header field. If the local sequence number is

empty, an initial value MUST be chosen using the guidelines of

Section 8.1.1.5. The method field in the CSeq header field value

MUST match the method of the request.

Rosenberg, et. al. Standards Track [Page 73]

RFC 3261 SIP: Session Initiation Protocol June 2002

With a length of 32 bits, a client could generate, within a single
call, one request a second for about 136 years before needing to
wrap around. The initial value of the sequence number is chosen
so that subsequent requests within the same call will not wrap
around. A non-zero initial value allows clients to use a time-
based initial sequence number. A client could, for example,
choose the 31 most significant bits of a 32-bit second clock as an
initial sequence number.

The UAC uses the remote target and route set to build the Request-URI
and Route header field of the request.

If the route set is empty, the UAC MUST place the remote target URI
into the Request-URI. The UAC MUST NOT add a Route header field to
the request.

If the route set is not empty, and the first URI in the route set

contains the Ir parameter (see Section 19.1.1), the UAC MUST place
the remote target URI into the Request-URI and MUST include a Route
header field containing the route set values in order, including all
parameters.

If the route set is not empty, and its first URI does not contain the

Ir parameter, the UAC MUST place the first URI from the route set

into the Request-URI, stripping any parameters that are not allowed

in a Request-URI. The UAC MUST add a Route header field containing
the remainder of the route set values in order, including all

parameters. The UAC MUST then place the remote target URI into the
Route header field as the last value.

For example, if the remote target is sip:user@remoteua and the route
set contains:

<sip:proxy1>,<sip:proxy2>,<sip:proxy3;lr>,<sip:proxy4>

The request will be formed with the following Request-URI and Route
header field:

METHOD sip:proxyl
Route: <sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>,<sip:user@remoteua>

If the first URI of the route set does not contain the Ir

parameter, the proxy indicated does not understand the routing
mechanisms described in this document and will act as specified in
RFC 2543, replacing the Request-URI with the first Route header
field value it receives while forwarding the message. Placing the
Request-URI at the end of the Route header field preserves the

Rosenberg, et. al. Standards Track [Page 74]

RFC 3261 SIP: Session Initiation Protocol June 2002

information in that Request-URI across the strict router (it will
be returned to the Request-URI when the request reaches a loose-
router).

A UAC SHOULD include a Contact header field in any target refresh
requests within a dialog, and unless there is a need to change it,

the URI SHOULD be the same as used in previous requests within the
dialog. If the "secure" flag is true, that URI MUST be a SIPS URI.

As discussed in Section 12.2.2, a Contact header field in a target
refresh request updates the remote target URI. This allows a UA to
provide a new contact address, should its address change during the
duration of the dialog.

However, requests that are not target refresh requests do not affect
the remote target URI for the dialog.

The rest of the request is formed as described in Section 8.1.1.

Once the request has been constructed, the address of the server is
computed and the request is sent, using the same procedures for
requests outside of a dialog (Section 8.1.2).

The procedures in Section 8.1.2 will normally result in the
request being sent to the address indicated by the topmost Route
header field value or the Request-URI if no Route header field is
present. Subject to certain restrictions, they allow the request

to be sent to an alternate address (such as a default outbound
proxy not represented in the route set).

12.2.1.2 Processing the Responses

The UAC will receive responses to the request from the transaction
layer. If the client transaction returns a timeout, this is treated
as a 408 (Request Timeout) response.

The behavior of a UAC that receives a 3xx response for a request sent
within a dialog is the same as if the request had been sent outside a
dialog. This behavior is described in Section 8.1.3.4.

Note, however, that when the UAC tries alternative locations, it
still uses the route set for the dialog to build the Route header
of the request.

When a UAC receives a 2xx response to a target refresh request, it

MUST replace the dialog’s remote target URI with the URI from the
Contact header field in that response, if present.

Rosenberg, et. al. Standards Track [Page 75]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the response for a request within a dialog is a 481

(Call/Transaction Does Not Exist) or a 408 (Request Timeout), the UAC
SHOULD terminate the dialog. A UAC SHOULD also terminate a dialog if
no response at all is received for the request (the client

transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of
sending a BYE.

12.2.2 UAS Behavior

Requests sent within a dialog, as any other requests, are atomic. If
a particular request is accepted by the UAS, all the state changes
associated with it are performed. If the request is rejected, none

of the state changes are performed.

Note that some requests, such as INVITEs, affect several pieces of
state.

The UAS will receive the request from the transaction layer. If the
request has a tag in the To header field, the UAS core computes the
dialog identifier corresponding to the request and compares it with
existing dialogs. If there is a match, this is a mid-dialog request.

In that case, the UAS first applies the same processing rules for
requests outside of a dialog, discussed in Section 8.2.

If the request has a tag in the To header field, but the dialog

identifier does not match any existing dialogs, the UAS may have
crashed and restarted, or it may have received a request for a

different (possibly failed) UAS (the UASs can construct the To tags

so that a UAS can identify that the tag was for a UAS for which it is
providing recovery). Another possibility is that the incoming

request has been simply misrouted. Based on the To tag, the UAS MAY
either accept or reject the request. Accepting the request for

acceptable To tags provides robustness, so that dialogs can persist
even through crashes. UAs wishing to support this capability must

take into consideration some issues such as choosing monotonically
increasing CSeq sequence numbers even across reboots, reconstructing
the route set, and accepting out-of-range RTP timestamps and sequence
numbers.

If the UAS wishes to reject the request because it does not wish to
recreate the dialog, it MUST respond to the request with a 481
(Call/Transaction Does Not Exist) status code and pass that to the
server transaction.

Rosenberg, et. al. Standards Track [Page 76]

RFC 3261 SIP: Session Initiation Protocol June 2002

Requests that do not change in any way the state of a dialog may be
received within a dialog (for example, an OPTIONS request). They are
processed as if they had been received outside the dialog.

If the remote sequence number is empty, it MUST be set to the value

of the sequence number in the CSeq header field value in the request.

If the remote sequence number was not empty, but the sequence number
of the request is lower than the remote sequence number, the request

is out of order and MUST be rejected with a 500 (Server Internal

Error) response. If the remote sequence number was not empty, and

the sequence number of the request is greater than the remote

sequence number, the request is in order. It is possible for the

CSeq sequence number to be higher than the remote sequence number by
more than one. This is not an error condition, and a UAS SHOULD be
prepared to receive and process requests with CSeq values more than
one higher than the previous received request. The UAS MUST then set
the remote sequence number to the value of the sequence number in the
CSeq header field value in the request.

If a proxy challenges a request generated by the UAC, the UAC has
to resubmit the request with credentials. The resubmitted request
will have a new CSeq number. The UAS will never see the first
request, and thus, it will notice a gap in the CSeq number space.
Such a gap does not represent any error condition.

When a UAS receives a target refresh request, it MUST replace the
dialog’s remote target URI with the URI from the Contact header field
in that request, if present.

12.3 Termination of a Dialog

Independent of the method, if a request outside of a dialog generates
a non-2xx final response, any early dialogs created through
provisional responses to that request are terminated. The mechanism
for terminating confirmed dialogs is method specific. In this
specification, the BYE method terminates a session and the dialog
associated with it. See Section 15 for details.

13 Initiating a Session
13.1 Overview

When a user agent client desires to initiate a session (for example,
audio, video, or a game), it formulates an INVITE request. The
INVITE request asks a server to establish a session. This request
may be forwarded by proxies, eventually arriving at one or more UAS
that can potentially accept the invitation. These UASs will

frequently need to query the user about whether to accept the

Rosenberg, et. al. Standards Track [Page 77]

RFC 3261 SIP: Session Initiation Protocol June 2002

invitation. After some time, those UASs can accept the invitation
(meaning the session is to be established) by sending a 2xx response.
If the invitation is not accepted, a 3xx, 4xx, 5xx or 6xx response is
sent, depending on the reason for the rejection. Before sending a
final response, the UAS can also send provisional responses (1xx) to
advise the UAC of progress in contacting the called user.

After possibly receiving one or more provisional responses, the UAC
will get one or more 2xx responses or one non-2xx final response.
Because of the protracted amount of time it can take to receive final
responses to INVITE, the reliability mechanisms for INVITE
transactions differ from those of other requests (like OPTIONS).
Once it receives a final response, the UAC needs to send an ACK for
every final response it receives. The procedure for sending this ACK
depends on the type of response. For final responses between 300 and
699, the ACK processing is done in the transaction layer and follows
one set of rules (See Section 17). For 2xx responses, the ACK is
generated by the UAC core.

A 2xx response to an INVITE establishes a session, and it also

creates a dialog between the UA that issued the INVITE and the UA
that generated the 2xx response. Therefore, when multiple 2xx
responses are received from different remote UAs (because the INVITE
forked), each 2xx establishes a different dialog. All these dialogs

are part of the same call.

This section provides details on the establishment of a session using
INVITE. A UA that supports INVITE MUST also support ACK, CANCEL and
BYE.

13.2 UAC Processing
13.2.1 Creating the Initial INVITE

Since the initial INVITE represents a request outside of a dialog,
its construction follows the procedures of Section 8.1.1. Additional
processing is required for the specific case of INVITE.

An Allow header field (Section 20.5) SHOULD be present in the INVITE.
It indicates what methods can be invoked within a dialog, on the UA
sending the INVITE, for the duration of the dialog. For example, a

UA capable of receiving INFO requests within a dialog [34] SHOULD
include an Allow header field listing the INFO method.

A Supported header field (Section 20.37) SHOULD be present in the
INVITE. It enumerates all the extensions understood by the UAC.

Rosenberg, et. al. Standards Track [Page 78]

RFC 3261 SIP: Session Initiation Protocol June 2002

An Accept (Section 20.1) header field MAY be present in the INVITE.
It indicates which Content-Types are acceptable to the UA, in both
the response received by it, and in any subsequent requests sent to
it within dialogs established by the INVITE. The Accept header field
is especially useful for indicating support of various session
description formats.

The UAC MAY add an Expires header field (Section 20.19) to limit the
validity of the invitation. If the time indicated in the Expires

header field is reached and no final answer for the INVITE has been
received, the UAC core SHOULD generate a CANCEL request for the
INVITE, as per Section 9.

A UAC MAY also find it useful to add, among others, Subject (Section
20.36), Organization (Section 20.25) and User-Agent (Section 20.41)
header fields. They all contain information related to the INVITE.

The UAC MAY choose to add a message body to the INVITE. Section
8.1.1.10 deals with how to construct the header fields -- Content-
Type among others -- needed to describe the message body.

There are special rules for message bodies that contain a session
description - their corresponding Content-Disposition is "session".

SIP uses an offer/answer model where one UA sends a session
description, called the offer, which contains a proposed description

of the session. The offer indicates the desired communications means
(audio, video, games), parameters of those means (such as codec
types) and addresses for receiving media from the answerer. The

other UA responds with another session description, called the

answer, which indicates which communications means are accepted, the
parameters that apply to those means, and addresses for receiving
media from the offerer. An offer/answer exchange is within the

context of a dialog, so that if a SIP INVITE results in multiple

dialogs, each is a separate offer/answer exchange. The offer/answer
model defines restrictions on when offers and answers can be made

(for example, you cannot make a new offer while one is in progress).
This results in restrictions on where the offers and answers can

appear in SIP messages. In this specification, offers and answers

can only appear in INVITE requests and responses, and ACK. The usage
of offers and answers is further restricted. For the initial INVITE
transaction, the rules are:

o The initial offer MUST be in either an INVITE or, if not there,
in the first reliable non-failure message from the UAS back to
the UAC. In this specification, that is the final 2xx
response.

Rosenberg, et. al. Standards Track [Page 79]

RFC 3261 SIP: Session Initiation Protocol June 2002

o If the initial offer is in an INVITE, the answer MUST be in a
reliable non-failure message from UAS back to UAC which is
correlated to that INVITE. For this specification, that is
only the final 2xx response to that INVITE. That same exact
answer MAY also be placed in any provisional responses sent
prior to the answer. The UAC MUST treat the first session
description it receives as the answer, and MUST ignore any
session descriptions in subsequent responses to the initial
INVITE.

o If the initial offer is in the first reliable non-failure
message from the UAS back to UAC, the answer MUST be in the
acknowledgement for that message (in this specification, ACK
for a 2xx response).

o After having sent or received an answer to the first offer, the
UAC MAY generate subsequent offers in requests based on rules
specified for that method, but only if it has received answers
to any previous offers, and has not sent any offers to which it
hasn’t gotten an answer.

o0 Once the UAS has sent or received an answer to the initial
offer, it MUST NOT generate subsequent offers in any responses
to the initial INVITE. This means that a UAS based on this
specification alone can never generate subsequent offers until
completion of the initial transaction.

Concretely, the above rules specify two exchanges for UAs compliant

to this specification alone - the offer is in the INVITE, and the

answer in the 2xx (and possibly in a 1xx as well, with the same

value), or the offer is in the 2xx, and the answer is in the ACK.

All user agents that support INVITE MUST support these two exchanges.

The Session Description Protocol (SDP) (RFC 2327 [1]) MUST be
supported by all user agents as a means to describe sessions, and its
usage for constructing offers and answers MUST follow the procedures
defined in [13].

The restrictions of the offer-answer model just described only apply
to bodies whose Content-Disposition header field value is "session".
Therefore, it is possible that both the INVITE and the ACK contain a
body message (for example, the INVITE carries a photo (Content-
Disposition: render) and the ACK a session description (Content-
Disposition: session)).

If the Content-Disposition header field is missing, bodies of

Content-Type application/sdp imply the disposition "session”, while
other content types imply "render".

Rosenberg, et. al. Standards Track [Page 80]

RFC 3261 SIP: Session Initiation Protocol June 2002

Once the INVITE has been created, the UAC follows the procedures
defined for sending requests outside of a dialog (Section 8). This
results in the construction of a client transaction that will

ultimately send the request and deliver responses to the UAC.

13.2.2 Processing INVITE Responses

Once the INVITE has been passed to the INVITE client transaction, the
UAC waits for responses for the INVITE. If the INVITE client
transaction returns a timeout rather than a response the TU acts as

if a 408 (Request Timeout) response had been received, as described
in Section 8.1.3.

13.2.2.1 1xx Responses

Zero, one or multiple provisional responses may arrive before one or
more final responses are received. Provisional responses for an
INVITE request can create "early dialogs". If a provisional response
has a tag in the To field, and if the dialog ID of the response does

not match an existing dialog, one is constructed using the procedures
defined in Section 12.1.2.

The early dialog will only be needed if the UAC needs to send a
request to its peer within the dialog before the initial INVITE
transaction completes. Header fields present in a provisional
response are applicable as long as the dialog is in the early state
(for example, an Allow header field in a provisional response
contains the methods that can be used in the dialog while this is in
the early state).

13.2.2.2 3xx Responses

A 3xx response may contain one or more Contact header field values
providing new addresses where the callee might be reachable.
Depending on the status code of the 3xx response (see Section 21.3),
the UAC MAY choose to try those new addresses.

13.2.2.3 4xx, 5xx and 6xx Responses

A single non-2xx final response may be received for the INVITE. 4xx,
5xx and 6xx responses may contain a Contact header field value
indicating the location where additional information about the error
can be found. Subsequent final responses (which would only arrive
under error conditions) MUST be ignored.

All early dialogs are considered terminated upon reception of the
non-2xx final response.

Rosenberg, et. al. Standards Track [Page 81]

RFC 3261 SIP: Session Initiation Protocol June 2002

After having received the non-2xx final response the UAC core
considers the INVITE transaction completed. The INVITE client
transaction handles the generation of ACKs for the response (see
Section 17).

13.2.2.4 2xx Responses

Multiple 2xx responses may arrive at the UAC for a single INVITE
request due to a forking proxy. Each response is distinguished by
the tag parameter in the To header field, and each represents a
distinct dialog, with a distinct dialog identifier.

If the dialog identifier in the 2xx response matches the dialog

identifier of an existing dialog, the dialog MUST be transitioned to

the "confirmed" state, and the route set for the dialog MUST be
recomputed based on the 2xx response using the procedures of Section
12.2.1.2. Otherwise, a new dialog in the "confirmed" state MUST be
constructed using the procedures of Section 12.1.2.

Note that the only piece of state that is recomputed is the route

set. Other pieces of state such as the highest sequence numbers
(remote and local) sent within the dialog are not recomputed. The
route set only is recomputed for backwards compatibility. RFC
2543 did not mandate mirroring of the Record-Route header field in
a 1xx, only 2xx. However, we cannot update the entire state of

the dialog, since mid-dialog requests may have been sent within
the early dialog, modifying the sequence numbers, for example.

The UAC core MUST generate an ACK request for each 2xx received from
the transaction layer. The header fields of the ACK are constructed

in the same way as for any request sent within a dialog (see Section

12) with the exception of the CSeq and the header fields related to
authentication. The sequence number of the CSeq header field MUST be
the same as the INVITE being acknowledged, but the CSeq method MUST
be ACK. The ACK MUST contain the same credentials as the INVITE. If
the 2xx contains an offer (based on the rules above), the ACK MUST

carry an answer in its body. If the offer in the 2xx response is not
acceptable, the UAC core MUST generate a valid answer in the ACK and
then send a BYE immediately.

Once the ACK has been constructed, the procedures of [4] are used to
determine the destination address, port and transport. However, the
request is passed to the transport layer directly for transmission,

rather than a client transaction. This is because the UAC core
handles retransmissions of the ACK, not the transaction layer. The
ACK MUST be passed to the client transport every time a
retransmission of the 2xx final response that triggered the ACK
arrives.

Rosenberg, et. al. Standards Track [Page 82]

RFC 3261 SIP: Session Initiation Protocol June 2002

The UAC core considers the INVITE transaction completed 64*T1 seconds
after the reception of the first 2xx response. At this point all the

early dialogs that have not transitioned to established dialogs are
terminated. Once the INVITE transaction is considered completed by

the UAC core, no more new 2xx responses are expected to arrive.

If, after acknowledging any 2xx response to an INVITE, the UAC does
not want to continue with that dialog, then the UAC MUST terminate
the dialog by sending a BYE request as described in Section 15.

13.3 UAS Processing
13.3.1 Processing of the INVITE

The UAS core will receive INVITE requests from the transaction layer.
It first performs the request processing procedures of Section 8.2,
which are applied for both requests inside and outside of a dialog.

Assuming these processing states are completed without generating a
response, the UAS core performs the additional processing steps:

1. If the request is an INVITE that contains an Expires header
field, the UAS core sets a timer for the number of seconds
indicated in the header field value. When the timer fires, the
invitation is considered to be expired. If the invitation
expires before the UAS has generated a final response, a 487
(Request Terminated) response SHOULD be generated.

2. If the request is a mid-dialog request, the method-independent
processing described in Section 12.2.2 is first applied. It
might also modify the session; Section 14 provides details.

3. If the request has a tag in the To header field but the dialog
identifier does not match any of the existing dialogs, the UAS
may have crashed and restarted, or may have received a request
for a different (possibly failed) UAS. Section 12.2.2 provides
guidelines to achieve a robust behavior under such a situation.

Processing from here forward assumes that the INVITE is outside of a
dialog, and is thus for the purposes of establishing a new session.

The INVITE may contain a session description, in which case the UAS
is being presented with an offer for that session. It is possible

that the user is already a participant in that session, even though

the INVITE is outside of a dialog. This can happen when a user is
invited to the same multicast conference by multiple other
participants. If desired, the UAS MAY use identifiers within the
session description to detect this duplication. For example, SDP

Rosenberg, et. al. Standards Track [Page 83]

RFC 3261 SIP: Session Initiation Protocol June 2002

contains a session id and version number in the origin (o) field. If

the user is already a member of the session, and the session
parameters contained in the session description have not changed, the
UAS MAY silently accept the INVITE (that is, send a 2xx response
without prompting the user).

If the INVITE does not contain a session description, the UAS is
being asked to participate in a session, and the UAC has asked that
the UAS provide the offer of the session. It MUST provide the offer
in its first non-failure reliable message back to the UAC. In this
specification, that is a 2xx response to the INVITE.

The UAS can indicate progress, accept, redirect, or reject the
invitation. In all of these cases, it formulates a response using
the procedures described in Section 8.2.6.

13.3.1.1 Progress

If the UAS is not able to answer the invitation immediately, it can
choose to indicate some kind of progress to the UAC (for example, an
indication that a phone is ringing). This is accomplished with a
provisional response between 101 and 199. These provisional
responses establish early dialogs and therefore follow the procedures
of Section 12.1.1 in addition to those of Section 8.2.6. A UAS MAY
send as many provisional responses as it likes. Each of these MUST
indicate the same dialog ID. However, these will not be delivered
reliably.

If the UAS desires an extended period of time to answer the INVITE,

it will need to ask for an "extension" in order to prevent proxies

from canceling the transaction. A proxy has the option of canceling

a transaction when there is a gap of 3 minutes between responses in a
transaction. To prevent cancellation, the UAS MUST send a hon-100
provisional response at every minute, to handle the possibility of

lost provisional responses.

An INVITE transaction can go on for extended durations when the
user is placed on hold, or when interworking with PSTN systems
which allow communications to take place without answering the
call. The latter is common in Interactive Voice Response (IVR)
systems.

13.3.1.2 The INVITE is Redirected
If the UAS decides to redirect the call, a 3xx response is sent. A

300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved
Temporarily) response SHOULD contain a Contact header field

Rosenberg, et. al. Standards Track [Page 84]

RFC 3261 SIP: Session Initiation Protocol June 2002

containing one or more URIs of new addresses to be tried. The
response is passed to the INVITE server transaction, which will deal
with its retransmissions.

13.3.1.3 The INVITE is Rejected

A common scenario occurs when the callee is currently not willing or
able to take additional calls at this end system. A 486 (Busy Here)
SHOULD be returned in such a scenario. If the UAS knows that no
other end system will be able to accept this call, a 600 (Busy
Everywhere) response SHOULD be sent instead. However, it is unlikely
that a UAS will be able to know this in general, and thus this

response will not usually be used. The response is passed to the
INVITE server transaction, which will deal with its retransmissions.

A UAS rejecting an offer contained in an INVITE SHOULD return a 488
(Not Acceptable Here) response. Such a response SHOULD include a
Warning header field value explaining why the offer was rejected.

13.3.1.4 The INVITE is Accepted

The UAS core generates a 2xx response. This response establishes a
dialog, and therefore follows the procedures of Section 12.1.1 in
addition to those of Section 8.2.6.

A 2xx response to an INVITE SHOULD contain the Allow header field and
the Supported header field, and MAY contain the Accept header field.
Including these header fields allows the UAC to determine the

features and extensions supported by the UAS for the duration of the

call, without probing.

If the INVITE request contained an offer, and the UAS had not yet
sent an answer, the 2xx MUST contain an answer. If the INVITE did
not contain an offer, the 2xx MUST contain an offer if the UAS had
not yet sent an offer.

Once the response has been constructed, it is passed to the INVITE
server transaction. Note, however, that the INVITE server
transaction will be destroyed as soon as it receives this final
response and passes it to the transport. Therefore, it is necessary
to periodically pass the response directly to the transport until the
ACK arrives. The 2xx response is passed to the transport with an
interval that starts at T1 seconds and doubles for each
retransmission until it reaches T2 seconds (T1 and T2 are defined in
Section 17). Response retransmissions cease when an ACK request for
the response is received. This is independent of whatever transport
protocols are used to send the response.

Rosenberg, et. al. Standards Track [Page 85]

RFC 3261 SIP: Session Initiation Protocol June 2002

Since 2xx is retransmitted end-to-end, there may be hops between
UAS and UAC that are UDP. To ensure reliable delivery across
these hops, the response is retransmitted periodically even if the
transport at the UAS is reliable.

If the server retransmits the 2xx response for 64*T1 seconds without
receiving an ACK, the dialog is confirmed, but the session SHOULD be
terminated. This is accomplished with a BYE, as described in Section
15.

14 Modifying an Existing Session

A successful INVITE request (see Section 13) establishes both a
dialog between two user agents and a session using the offer-answer
model. Section 12 explains how to modify an existing dialog using a
target refresh request (for example, changing the remote target URI

of the dialog). This section describes how to modify the actual
session. This modification can involve changing addresses or ports,
adding a media stream, deleting a media stream, and so on. This is
accomplished by sending a new INVITE request within the same dialog
that established the session. An INVITE request sent within an
existing dialog is known as a re-INVITE.

Note that a single re-INVITE can modify the dialog and the
parameters of the session at the same time.

Either the caller or callee can modify an existing session.

The behavior of a UA on detection of media failure is a matter of

local policy. However, automated generation of re-INVITE or BYE is

NOT RECOMMENDED to avoid flooding the network with traffic when there
is congestion. In any case, if these messages are sent

automatically, they SHOULD be sent after some randomized interval.

Note that the paragraph above refers to automatically generated
BYEs and re-INVITEs. If the user hangs up upon media failure, the
UA would send a BYE request as usual.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptions in
INVITEs (Section 13.2.1) applies to re-INVITEs. As a result, a UAC
that wants to add a media stream, for example, will create a new
offer that contains this media stream, and send that in an INVITE
request to its peer. It is important to note that the full

description of the session, not just the change, is sent. This
supports stateless session processing in various elements, and
supports failover and recovery capabilities. Of course, a UAC MAY

Rosenberg, et. al. Standards Track [Page 86]

RFC 3261 SIP: Session Initiation Protocol June 2002

send a re-INVITE with no session description, in which case the first
reliable non-failure response to the re-INVITE will contain the offer
(in this specification, that is a 2xx response).

If the session description format has the capability for version
numbers, the offerer SHOULD indicate that the version of the session
description has changed.

The To, From, Call-ID, CSeq, and Request-URI of a re-INVITE are set
following the same rules as for regular requests within an existing
dialog, described in Section 12.

A UAC MAY choose not to add an Alert-Info header field or a body with
Content-Disposition "alert" to re-INVITEs because UASs do not
typically alert the user upon reception of a re-INVITE.

Unlike an INVITE, which can fork, a re-INVITE will never fork, and
therefore, only ever generate a single final response. The reason a
re-INVITE will never fork is that the Request-URI identifies the
target as the UA instance it established the dialog with, rather than
identifying an address-of-record for the user.

Note that a UAC MUST NOT initiate a new INVITE transaction within a
dialog while another INVITE transaction is in progress in either
direction.

1. If there is an ongoing INVITE client transaction, the TU MUST
wait until the transaction reaches the completed or terminated
state before initiating the new INVITE.

2. If there is an ongoing INVITE server transaction, the TU MUST
wait until the transaction reaches the confirmed or terminated
state before initiating the new INVITE.

However, a UA MAY initiate a regular transaction while an INVITE
transaction is in progress. A UA MAY also initiate an INVITE
transaction while a regular transaction is in progress.

If a UA receives a non-2xx final response to a re-INVITE, the session
parameters MUST remain unchanged, as if no re-INVITE had been issued.
Note that, as stated in Section 12.2.1.2, if the non-2xx final

response is a 481 (Call/Transaction Does Not Exist), or a 408

(Request Timeout), or no response at all is received for the re-

INVITE (that is, a timeout is returned by the INVITE client

transaction), the UAC will terminate the dialog.

Rosenberg, et. al. Standards Track [Page 87]

RFC 3261 SIP: Session Initiation Protocol June 2002

If a UAC receives a 491 response to a re-INVITE, it SHOULD start a
timer with a value T chosen as follows:

1. If the UAC is the owner of the Call-ID of the dialog ID
(meaning it generated the value), T has a randomly chosen value
between 2.1 and 4 seconds in units of 10 ms.

2. If the UAC is not the owner of the Call-ID of the dialog ID, T
has a randomly chosen value of between 0 and 2 seconds in units
of 10 ms.

When the timer fires, the UAC SHOULD attempt the re-INVITE once more,
if it still desires for that session modification to take place. For

example, if the call was already hung up with a BYE, the re-INVITE

would not take place.

The rules for transmitting a re-INVITE and for generating an ACK for
a 2xx response to re-INVITE are the same as for the initial INVITE
(Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the procedure for distinguishing incoming
re-INVITEs from incoming initial INVITEs and handling a re-INVITE for
an existing dialog.

A UAS that receives a second INVITE before it sends the final
response to a first INVITE with a lower CSeq sequence number on the
same dialog MUST return a 500 (Server Internal Error) response to the
second INVITE and MUST include a Retry-After header field with a
randomly chosen value of between 0 and 10 seconds.

A UAS that receives an INVITE on a dialog while an INVITE it had sent
on that dialog is in progress MUST return a 491 (Request Pending)
response to the received INVITE.

If a UA receives a re-INVITE for an existing dialog, it MUST check

any version identifiers in the session description or, if there are

no version identifiers, the content of the session description to see

if it has changed. If the session description has changed, the UAS
MUST adjust the session parameters accordingly, possibly after asking
the user for confirmation.

Versioning of the session description can be used to accommodate

the capabilities of new arrivals to a conference, add or delete
media, or change from a unicast to a multicast conference.

Rosenberg, et. al. Standards Track [Page 88]

RFC 3261 SIP: Session Initiation Protocol June 2002

If the new session description is not acceptable, the UAS can reject
it by returning a 488 (Not Acceptable Here) response for the re-
INVITE. This response SHOULD include a Warning header field.

If a UAS generates a 2xx response and never receives an ACK, it
SHOULD generate a BYE to terminate the dialog.

A UAS MAY choose not to generate 180 (Ringing) responses for a re-
INVITE because UACs do not typically render this information to the
user. For the same reason, UASs MAY choose not to use an Alert-Info
header field or a body with Content-Disposition "alert" in responses

to are-INVITE.

A UAS providing an offer in a 2xx (because the INVITE did not contain
an offer) SHOULD construct the offer as if the UAS were making a
brand new call, subject to the constraints of sending an offer that
updates an existing session, as described in [13] in the case of SDP.
Specifically, this means that it SHOULD include as many media formats
and media types that the UA is willing to support. The UAS MUST
ensure that the session description overlaps with its previous

session description in media formats, transports, or other parameters
that require support from the peer. This is to avoid the need for

the peer to reject the session description. If, however, it is
unacceptable to the UAC, the UAC SHOULD generate an answer with a
valid session description, and then send a BYE to terminate the
session.

15 Terminating a Session

This section describes the procedures for terminating a session
established by SIP. The state of the session and the state of the
dialog are very closely related. When a session is initiated with an
INVITE, each 1xx or 2xx response from a distinct UAS creates a
dialog, and if that response completes the offer/answer exchange, it
also creates a session. As a result, each session is "associated"
with a single dialog - the one which resulted in its creation. If an
initial INVITE generates a non-2xx final response, that terminates

all sessions (if any) and all dialogs (if any) that were created

through responses to the request. By virtue of completing the
transaction, a non-2xx final response also prevents further sessions
from being created as a result of the INVITE. The BYE request is
used to terminate a specific session or attempted session. In this
case, the specific session is the one with the peer UA on the other
side of the dialog. When a BYE is received on a dialog, any session
associated with that dialog SHOULD terminate. A UA MUST NOT send a
BYE outside of a dialog. The caller's UA MAY send a BYE for either
confirmed or early dialogs, and the callee’s UA MAY send a BYE on
confirmed dialogs, but MUST NOT send a BYE on early dialogs.

Rosenberg, et. al. Standards Track [Page 89]

RFC 3261 SIP: Session Initiation Protocol June 2002

However, the callee’s UA MUST NOT send a BYE on a confirmed dialog
until it has received an ACK for its 2xx response or until the server
transaction times out. If no SIP extensions have defined other
application layer states associated with the dialog, the BYE also
terminates the dialog.

The impact of a non-2xx final response to INVITE on dialogs and
sessions makes the use of CANCEL attractive. The CANCEL attempts to
force a non-2xx response to the INVITE (in particular, a 487).

Therefore, if a UAC wishes to give up on its call attempt entirely,

it can send a CANCEL. If the INVITE results in 2xx final response(s)

to the INVITE, this means that a UAS accepted the invitation while

the CANCEL was in progress. The UAC MAY continue with the sessions
established by any 2xx responses, or MAY terminate them with BYE.

The notion of "hanging up" is not well defined within SIP. It is
specific to a particular, albeit common, user interface.

Typically, when the user hangs up, it indicates a desire to
terminate the attempt to establish a session, and to terminate any
sessions already created. For the caller's UA, this would imply a
CANCEL request if the initial INVITE has not generated a final
response, and a BYE to all confirmed dialogs after a final
response. For the callee’s UA, it would typically imply a BYE;
presumably, when the user picked up the phone, a 2xx was
generated, and so hanging up would result in a BYE after the ACK
is received. This does not mean a user cannot hang up before
receipt of the ACK, it just means that the software in his phone
needs to maintain state for a short while in order to clean up
properly. If the particular Ul allows for the user to reject a

call before its answered, a 403 (Forbidden) is a good way to
express that. As per the rules above, a BYE can't be sent.

15.1 Terminating a Session with a BYE Request
15.1.1 UAC Behavior

A BYE request is constructed as would any other request within a
dialog, as described in Section 12.

Once the BYE is constructed, the UAC core creates a new non-INVITE
client transaction, and passes it the BYE request. The UAC MUST
consider the session terminated (and therefore stop sending or
listening for media) as soon as the BYE request is passed to the

client transaction. If the response for the BYE is a 481
(Call/Transaction Does Not Exist) or a 408 (Request Timeout) or no

Rosenberg, et. al. Standards Track [Page 90]

RFC 3261 SIP: Session Initiation Protocol June 2002

response at all is received for the BYE (that is, a timeout is
returned by the client transaction), the UAC MUST consider the
session and the dialog terminated.

15.1.2 UAS Behavior

A UAS first processes the BYE request according to the general UAS
processing described in Section 8.2. A UAS core receiving a BYE
request checks if it matches an existing dialog. If the BYE does not
match an existing dialog, the UAS core SHOULD generate a 481
(Call/Transaction Does Not Exist) response and pass that to the
server transaction.

This rule means that a BYE sent without tags by a UAC will be
rejected. This is a change from RFC 2543, which allowed BYE
without tags.

A UAS core receiving a BYE request for an existing dialog MUST follow
the procedures of Section 12.2.2 to process the request. Once done,

the UAS SHOULD terminate the session (and therefore stop sending and
listening for media). The only case where it can elect not to are

multicast sessions, where participation is possible even if the other
participant in the dialog has terminated its involvement in the

session. Whether or not it ends its participation on the session,

the UAS core MUST generate a 2xx response to the BYE, and MUST pass
that to the server transaction for transmission.

The UAS MUST still respond to any pending requests received for that
dialog. Itis RECOMMENDED that a 487 (Request Terminated) response
be generated to those pending requests.

16 Proxy Behavior
16.1 Overview

SIP proxies are elements that route SIP requests to user agent
servers and SIP responses to user agent clients. A request may
traverse several proxies on its way to a UAS. Each will make routing
decisions, modifying the request before forwarding it to the next
element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request
arrives, an element that can play the role of a proxy first decides

if it needs to respond to the request on its own. For instance, the
request may be malformed or the element may need credentials from the
client before acting as a proxy. The element MAY respond with any

Rosenberg, et. al. Standards Track [Page 91]

RFC 3261 SIP: Session Initiation Protocol June 2002

appropriate error code. When responding directly to a request, the
element is playing the role of a UAS and MUST behave as described in
Section 8.2.

A proxy can operate in either a stateful or stateless mode for each
new request. When stateless, a proxy acts as a simple forwarding
element. It forwards each request downstream to a single element
determined by making a targeting and routing decision based on the
request. It simply forwards every response it receives upstream. A
stateless proxy discards information about a message once the message
has been forwarded. A stateful proxy remembers information
(specifically, transaction state) about each incoming request and any
requests it sends as a result of processing the incoming request. It
uses this information to affect the processing of future messages
associated with that request. A stateful proxy MAY choose to "fork"
a request, routing it to multiple destinations. Any request that is
forwarded to more than one location MUST be handled statefully.

In some circumstances, a proxy MAY forward requests using stateful
transports (such as TCP) without being transaction-stateful. For
instance, a proxy MAY forward a request from one TCP connection to
another transaction statelessly as long as it places enough
information in the message to be able to forward the response down
the same connection the request arrived on. Requests forwarded
between different types of transports where the proxy’s TU must take
an active role in ensuring reliable delivery on one of the transports
MUST be forwarded transaction statefully.

A stateful proxy MAY transition to stateless operation at any time
during the processing of a request, so long as it did not do anything
that would otherwise prevent it from being stateless initially
(forking, for example, or generation of a 100 response). When
performing such a transition, all state is simply discarded. The
proxy SHOULD NOT initiate a CANCEL request.

Much of the processing involved when acting statelessly or statefully
for a request is identical. The next several subsections are written
from the point of view of a stateful proxy. The last section calls

out those places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine.
Its behavior is modeled here in terms of the server and client
transactions defined in Section 17. A stateful proxy has a server
transaction associated with one or more client transactions by a
higher layer proxy processing component (see figure 3), known as a
proxy core. Anincoming request is processed by a server

Rosenberg, et. al. Standards Track [Page 92]

RFC 3261 SIP: Session Initiation Protocol June 2002

transaction. Requests from the server transaction are passed to a
proxy core. The proxy core determines where to route the request,
choosing one or more next-hop locations. An outgoing request for
each next-hop location is processed by its own associated client
transaction. The proxy core collects the responses from the client
transactions and uses them to send responses to the server
transaction.

A stateful proxy creates a hew server transaction for each new

request received. Any retransmissions of the request will then be
handled by that server transaction per Section 17. The proxy core

MUST behave as a UAS with respect to sending an immediate provisional
on that server transaction (such as 100 Trying) as described in

Section 8.2.6. Thus, a stateful proxy SHOULD NOT generate 100
(Trying) responses to non-INVITE requests.

This is a model of proxy behavior, not of software. An
implementation is free to take any approach that replicates the
external behavior this model defines.

For all new requests, including any with unknown methods, an element
intending to proxy the request MUST:

1. Validate the request (Section 16.3)
2. Preprocess routing information (Section 16.4)

3. Determine target(s) for the request (Section 16.5)

S — +

| | +---+

| [1C]|

| [1T]

| | #omet
+---+ | Proxy | +---+ CT = Client Transaction
| S|| "Higher" Layer ||C |
| T || T| ST = Server Transaction
+-—-+ | | +---+

| | o-et

| [1C|

| [1T]

| | +---+

R +

Figure 3: Stateful Proxy Model

Rosenberg, et. al. Standards Track [Page 93]

RFC 3261 SIP: Session Initiation Protocol June 2002

4. Forward the request to each target (Section 16.6)
5. Process all responses (Section 16.7)
16.3 Request Validation

Before an element can proxy a request, it MUST verify the message’s
validity. A valid message must pass the following checks:

1. Reasonable Syntax

2. URI scheme

3. Max-Forwards

4. (Optional) Loop Detection
5. Proxy-Require

6. Proxy-Authorization

If any of these checks fall, the element MUST behave as a user agent
server (see Section 8.2) and respond with an error code.

Notice that a proxy is not required to detect merged requests and

MUST NOT treat merged requests as an error condition. The endpoints

receiving the requests will resolve the merge as described in Section
8.2.2.2.

1. Reasonable syntax check

The request MUST be well-formed enough to be handled with a server

transaction. Any components involved in the remainder of these

Request Validation steps or the Request Forwarding section MUST be

well-formed. Any other components, well-formed or not, SHOULD be
ignored and remain unchanged when the message is forwarded. For
instance, an element would not reject a request because of a
malformed Date header field. Likewise, a proxy would not remove a
malformed Date header field before forwarding a request.

This protocol is designed to be extended. Future extensions may

define new methods and header fields at any time. An element MUST

NOT refuse to proxy a request because it contains a method or
header field it does not know about.

Rosenberg, et. al. Standards Track [Page 94]

RFC 3261 SIP: Session Initiation Protocol June 2002

2. URI scheme check

If the Request-URI has a URI whose scheme is not understood by the
proxy, the proxy SHOULD reject the request with a 416 (Unsupported
URI Scheme) response.

3. Max-Forwards check

The Max-Forwards header field (Section 20.22) is used to limit the
number of elements a SIP request can traverse.

If the request does not contain a Max-Forwards header field, this
check is passed.

If the request contains a Max-Forwards header field with a field
value greater than zero, the check is passed.

If the request contains a Max-Forwards header field with a field

value of zero (0), the element MUST NOT forward the request. If

the request was for OPTIONS, the element MAY act as the final
recipient and respond per Section 11. Otherwise, the element MUST
return a 483 (Too many hops) response.

4. Optional Loop Detection check

An element MAY check for forwarding loops before forwarding a
request. If the request contains a Via header field with a sent-

by value that equals a value placed into previous requests by the
proxy, the request has been forwarded by this element before. The
request has either looped or is legitimately spiraling through the
element. To determine if the request has looped, the element MAY
perform the branch parameter calculation described in Step 8 of
Section 16.6 on this message and compare it to the parameter
rec