
Network Working Group G. Zorn
Request for Comments: 2433 S. Cobb
Category: Informational Microsoft Corporation
 October 1998

 Microsoft PPP CHAP Extensions

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

IESG Note

 The protocol described here has significant vulnerabilities. People
 planning on implementing or using this protocol should read section
 12, "Security Considerations".

1. Abstract

 The Point-to-Point Protocol (PPP) [1] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links. PPP
 defines an extensible Link Control Protocol and a family of Network
 Control Protocols (NCPs) for establishing and configuring different
 network-layer protocols.

 This document describes Microsoft’s PPP CHAP dialect (MS-CHAP), which
 extends the user authentication functionality provided on Windows
 networks to remote workstations. MS-CHAP is closely derived from the
 PPP Challenge Handshake Authentication Protocol described in RFC 1994
 [2], which the reader should have at hand.

 The algorithms used in the generation of various MS-CHAP protocol
 fields are described in an appendix.

2. Introduction

 Microsoft created MS-CHAP to authenticate remote Windows
 workstations, providing the functionality to which LAN-based users
 are accustomed while integrating the encryption and hashing
 algorithms used on Windows networks.

Zorn & Cobb Informational [Page 1]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 Where possible, MS-CHAP is consistent with standard CHAP. Briefly,
 the differences between MS-CHAP and standard CHAP are:

 * MS-CHAP is enabled by negotiating CHAP Algorithm 0x80 in LCP
 option 3, Authentication Protocol.

 * The MS-CHAP Response packet is in a format designed for
 compatibility with Microsoft’s Windows NT 3.5, 3.51 and 4.0, and
 Windows95 networking products. The MS-CHAP format does not
 require the authenticator to store a clear-text or reversibly
 encrypted password.

 * MS-CHAP provides authenticator-controlled authentication retry
 and password changing mechanisms.

 * MS-CHAP defines a set of reason-for-failure codes returned in
 the Failure packet Message field.

3. Specification of Requirements

 In this document, the key words "MAY", "MUST, "MUST NOT", "optional",
 "recommended", "SHOULD", and "SHOULD NOT" are to be interpreted as
 described in [2].

4. LCP Configuration

 The LCP configuration for MS-CHAP is identical to that for standard
 CHAP, except that the Algorithm field has value 0x80, rather than the
 MD5 value 0x05. PPP implementations which do not support MS-CHAP,
 but correctly implement LCP Config-Rej, should have no problem
 dealing with this non-standard option.

5. Challenge Packet

 The MS-CHAP Challenge packet is identical in format to the standard
 CHAP Challenge packet.

 MS-CHAP authenticators send an 8-octet challenge Value field. Peers
 need not duplicate Microsoft’s algorithm for selecting the 8-octet
 value, but the standard guidelines on randomness [1,2,7] SHOULD be
 observed.

 Microsoft authenticators do not currently provide information in the
 Name field. This may change in the future.

Zorn & Cobb Informational [Page 2]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

6. Response Packet

 The MS-CHAP Response packet is identical in format to the standard
 CHAP Response packet. However, the Value field is sub-formatted
 differently as follows:

 24 octets: LAN Manager compatible challenge response
 24 octets: Windows NT compatible challenge response
 1 octet : "Use Windows NT compatible challenge response" flag

 The LAN Manager compatible challenge response is an encoded function
 of the password and the received challenge as output by the routine
 LmChallengeResponse() (see section A.1, below). LAN Manager
 passwords are limited to 14 case-insensitive OEM characters. Note
 that use of the LAN Manager compatible challenge response has been
 deprecated; peers SHOULD NOT generate it, and the sub-field SHOULD be
 zero-filled. The algorithm used in the generation of the LAN Manager
 compatible challenge response is described here for informational
 purposes only.

 The Windows NT compatible challenge response is an encoded function
 of the password and the received challenge as output by the routine
 NTChallengeResponse() (see section A.5, below). The Windows NT
 password is a string of 0 to (theoretically) 256 case-sensitive
 Unicode [8] characters. Current versions of Windows NT limit
 passwords to 14 characters, mainly for compatibility reasons; this
 may change in the future.

 The "use Windows NT compatible challenge response" flag, if 1,
 indicates that the Windows NT response is provided and should be used
 in preference to the LAN Manager response. The LAN Manager response
 will still be used if the account does not have a Windows NT password
 hash, e.g. if the password has not been changed since the account
 was uploaded from a LAN Manager 2.x account database. If the flag is
 0, the Windows NT response is ignored and the LAN Manager response is
 used. Since the use of LAN Manager authentication has been
 deprecated, this flag SHOULD always be set (1) and the LAN Manager
 compatible challenge response field SHOULD be zero-filled.

 The Name field identifies the peer’s user account name. The Windows
 NT domain name may prefix the user’s account name (e.g.
 "BIGCO\johndoe" where "BIGCO" is a Windows NT domain containing the
 user account "john-doe"). If a domain is not provided, the backslash
 should also be omitted, (e.g. "johndoe").

Zorn & Cobb Informational [Page 3]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

7. Success Packet

 The Success packet is identical in format to the standard CHAP
 Success packet.

8. Failure Packet

 The Failure packet is identical in format to the standard CHAP
 Failure packet. There is, however, formatted text stored in the
 Message field which, contrary to the standard CHAP rules, affects the
 protocol. The Message field format is:

 "E=eeeeeeeeee R=r C=cccccccccccccccc V=vvvvvvvvvv"

 where

 The "eeeeeeeeee" is the decimal error code (need not be 10
 digits) corresponding to one of those listed below, though
 implementations should deal with codes not on this list
 gracefully.

 646 ERROR_RESTRICTED_LOGON_HOURS
 647 ERROR_ACCT_DISABLED
 648 ERROR_PASSWD_EXPIRED
 649 ERROR_NO_DIALIN_PERMISSION
 691 ERROR_AUTHENTICATION_FAILURE
 709 ERROR_CHANGING_PASSWORD

 The "r" is a flag set to "1" if a retry is allowed, and "0" if
 not. When the authenticator sets this flag to "1" it disables
 short timeouts, expecting the peer to prompt the user for new
 credentials and resubmit the response.

 The "cccccccccccccccc" is 16 hexadecimal digits representing an
 ASCII representation of a new challenge value. This field is
 optional. If it is not sent, the authenticator expects the
 resubmitted response to be calculated based on the previous
 challenge value plus decimal 23 in the first octet, i.e. the
 one immediately following the Value Size field. Windows 95
 authenticators may send this field. Windows NT authenticators
 do not, but may in the future. Both systems implement peer
 support of this field.

 The "vvvvvvvvvv" is the decimal version code (need not be 10
 digits) indicating the MS-CHAP protocol version supported on
 the server. Currently, this is interesting only in selecting a
 Change Password packet type. If the field is not present the
 version should be assumed to be 1; since use of the version 1

Zorn & Cobb Informational [Page 4]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 Change Password packet has been deprecated, this field SHOULD
 always contain a value greater than or equal to 2.

 Implementations should accept but ignore additional text they do not
 recognize.

9. Change Password Packet (version 1)

 The version 1 Change Password packet does not appear in standard
 CHAP. It allows the peer to change the password on the account
 specified in the previous Response packet. The version 1 Change
 Password packet should be sent only if the authenticator reports
 ERROR_PASSWD_EXPIRED (E=648) and V is either missing or equal to one
 in the Message field of the Failure packet.

 The use of the Change Password Packet (version 1) has been
 deprecated; the format of the packet is described here for
 informational purposes, but peers SHOULD NOT transmit it.

 The format of this packet is as follows:

 1 octet : Code (=5)
 1 octet : Identifier
 2 octets: Length (=72)
 16 octets: Encrypted LAN Manager Old password Hash
 16 octets: Encrypted LAN Manager New Password Hash
 16 octets: Encrypted Windows NT Old Password Hash
 16 octets: Encrypted Windows NT New Password Hash
 2 octets: Password Length
 2 octets: Flags

 Code
 5

 Identifier
 The Identifier field is one octet and aids in matching requests
 and replies. The value is the Identifier of the received
 Failure packet to which this packet responds plus 1.

 Length
 72

 Encrypted LAN Manager New Password Hash
 Encrypted LAN Manager Old Password Hash
 These fields contain the LAN Manager password hash of the new
 and old passwords encrypted with the last received challenge
 value, as output by the routine LmEncryptedPasswordHash() (see
 section A.8, below).

Zorn & Cobb Informational [Page 5]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 Encrypted Windows NT New Password Hash
 Encrypted Windows NT Old Password Hash
 These fields contain the Windows NT password hash of the new
 and old passwords encrypted with the last received challenge
 value, as output by the pseudo-code routine
 NtEncryptedPasswordHash() (see section A.10, below).

 Password Length
 The length in octets of the LAN Manager compatible form of the
 new password. If this value is greater than or equal to zero
 and less than or equal to 14 it is assumed that the encrypted
 LAN Manager password hash fields are valid. Otherwise, it is
 assumed these fields are not valid, in which case the Windows
 NT compatible passwords MUST be provided.

 Flags
 This field is two octets in length. It is a bit field of
 option flags where 0 is the least significant bit of the 16-bit
 quantity:

 Bit 0
 If this bit is set (1), it indicates that the encrypted
 Windows NT hashed passwords are valid and should be used.
 If this bit is cleared (0), the Windows NT fields are not
 used and the LAN Manager fields must be provided.

 Bits 1-15
 Reserved, always clear (0).

10. Change Password Packet (version 2)

 The version 2 Change Password packet does not appear in standard
 CHAP. It allows the peer to change the password on the account
 specified in the preceding Response packet. The version 2 Change
 Password packet should be sent only if the authenticator reports
 ERROR_PASSWD_EXPIRED (E=648) and a version of 2 or greater in the
 Message field of the Failure packet.

 This packet type is supported by Windows NT 3.51, 4.0 and recent
 versions of Windows 95. It is not supported by Windows NT 3.5 or
 early versions of Windows 95.

 The format of this packet is as follows:

 1 octet : Code
 1 octet : Identifier
 2 octets : Length
 516 octets : Password Encrypted with Old NT Hash

Zorn & Cobb Informational [Page 6]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 16 octets : Old NT Hash Encrypted with New NT Hash
 516 octets : Password Encrypted with Old LM Hash
 16 octets : Old LM Hash Encrypted With New NT Hash
 24 octets : LAN Manager compatible challenge response
 24 octets : Windows NT compatible challenge response
 2-octet : Flags

 Code
 6

 Identifier
 The Identifier field is one octet and aids in matching requests
 and replies. The value is the Identifier of the received
 Failure packet to which this packet responds plus 1.

 Length
 1118

 Password Encrypted with Old NT Hash
 This field contains the PWBLOCK form of the new Windows NT
 password encrypted with the old Windows NT password hash, as
 output by the NewPasswordEncryptedWithOldNtPasswordHash()
 routine (see section A.11, below).

 Old NT Hash Encrypted with New NT Hash
 This field contains the old Windows NT password hash encrypted
 with the new Windows NT password hash, as output by the
 OldNtPasswordHashEncryptedWithNewNtPasswordHash() routine (see
 section A.14, below).

 Password Encrypted with Old LM Hash
 This field contains the PWBLOCK form of the new Windows NT
 password encrypted with the old LAN Manager password hash, as
 output by the NewPasswordEncryptedWithOldLmPasswordHash()
 routine described in section A.15, below. Note, however, that
 the use of this field has been deprecated: peers SHOULD NOT
 generate it, and this field SHOULD be zero-filled.

 Old LM Hash Encrypted With New NT Hash
 This field contains the old LAN Manager password hash encrypted
 with the new Windows NT password hash, as output by the
 OldLmPasswordHashEncryptedWithNewNtPasswordHash() routine (see
 section A.16, below). Note, however, that the use of this
 field has been deprecated: peers SHOULD NOT generate it, and
 this field SHOULD be zero-filled.

Zorn & Cobb Informational [Page 7]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 LAN Manager compatible challenge response
 Windows NT compatible challenge response
 The challenge response field (as described in the Response
 packet description), but calculated on the new password and the
 same challenge used in the last response. Note that use of the
 LAN Manager compatible challenge response has been deprecated;
 peers SHOULD NOT generate it, and the field SHOULD be zero-
 filled.

 Flags
 This field is two octets in length. It is a bit field of
 option flags where 0 is the least significant bit of the 16-bit
 quantity. The format of this field is illustrated in the
 following diagram:

 1
 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Bit 0
 The "use Windows NT compatible challenge response" flag
 as described in the Response packet.

 Bit 1
 Set (1) indicates that the "Password Encrypted with Old
 LM Hash" and "Old LM Hash Encrypted With New NT Hash"
 fields are valid and should be used. Clear (0) indicates
 these fields are not valid. This bit SHOULD always be
 clear (0).

 Bits 2-15
 Reserved, always clear (0).

11. Security Considerations

 As an implementation detail, the authenticator SHOULD limit the
 number of password retries allowed to make brute-force password
 guessing attacks more difficult.

 Because the challenge value is encrypted using the password hash to
 form the response and the challenge is transmitted in clear-text
 form, both passive known-plaintext and active chosen-plaintext
 attacks against the password hash are possible. Suitable precautions
 (i.e., frequent password changes) SHOULD be taken in environments
 where eavesdropping is likely.

Zorn & Cobb Informational [Page 8]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 The Change Password (version 1) packet is vulnerable to a passive
 eavesdropping attack which can easily reveal the new password hash.
 For this reason, it MUST NOT be sent if eavesdropping is possible.

12. References

 [1] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51, RFC
 1661, July 1994.

 [2] Simpson, W., "PPP Challenge Handshake Authentication Protocol
 (CHAP)", RFC 1994, August 1996.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] "Data Encryption Standard (DES)", Federal Information Processing
 Standard Publication 46-2, National Institute of Standards and
 Technology, December 1993.

 [5] Rivest, R., "MD4 Message Digest Algorithm", RFC 1320, April 1992.

 [6] RC4 is a proprietary encryption algorithm available under license
 from RSA Data Security Inc. For licensing information, contact:
 RSA Data Security, Inc.
 100 Marine Parkway
 Redwood City, CA 94065-1031

 [7] Eastlake, D., Crocker, S., and J. Schiller, "Randomness
 Recomnendations for Security", RFC 1750, December 1994.

 [8] "The Unicode Standard, Version 2.0", The Unicode Consortium,
 Addison-Wesley, 1996. ISBN 0-201-48345-9.

 [9] "DES Modes of Operation", Federal Information Processing
 Standards Publication 81, National Institute of Standards and
 Technology, December 1980

13. Acknowledgements

 Thanks (in no particular order) to Jeff Haag (Jeff_Haag@3com.com),
 Bill Palter (palter@network-alchemy.com), Bruce Johnson
 (bjohnson@microsoft.com), Tony Bell (tonybe@microsoft.com), Benoit
 Martin (ehlija@vircom.com), and Joe Davies (josephd@microsoft.com)
 for useful suggestions and feedback.

Zorn & Cobb Informational [Page 9]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

14. Chair’s Address

 The PPP Extensions Working Group can be contacted via the current
 chair:

 Karl Fox
 Ascend Communications
 3518 Riverside Drive
 Suite 101
 Columbus, OH 43221

 Phone: +1 614 326 6841
 EMail: karl@ascend.com

15. Authors’ Addresses

 Questions about this memo can also be directed to:

 Glen Zorn
 Microsoft Corporation
 One Microsoft Way
 Redmond, Washington 98052

 Phone: +1 425 703 1559
 Fax: +1 425 936 7329
 EMail: glennz@microsoft.com

 Steve Cobb
 Microsoft Corporation
 One Microsoft Way
 Redmond, Washington 98052

 EMail: stevec@microsoft.com

Zorn & Cobb Informational [Page 10]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

Appendix A - Pseudocode

 The routines mentioned in the text are described in pseudocode below.

A.1 LmChallengeResponse()

 LmChallengeResponse(
 IN 8-octet Challenge,
 IN 0-to-14-oem-char Password,
 OUT 24-octet Response)
 {
 LmPasswordHash(Password, giving PasswordHash)
 ChallengeResponse(Challenge, PasswordHash, giving Response)
 }

A.2 LmPasswordHash()

 LmPasswordHash(
 IN 0-to-14-oem-char Password,
 OUT 16-octet PasswordHash)
 {
 Set UcasePassword to the uppercased Password
 Zero pad UcasePassword to 14 characters

 DesHash(1st 7-octets of UcasePassword,
 giving 1st 8-octets of PasswordHash)

 DesHash(2nd 7-octets of UcasePassword,
 giving 2nd 8-octets of PasswordHash)
 }

A.3 DesHash()

 DesHash(
 IN 7-octet Clear,
 OUT 8-octet Cypher)
 {
 /*
 * Make Cypher an irreversibly encrypted form of Clear by
 * encrypting known text using Clear as the secret key.
 * The known text consists of the string
 *
 * KGS!@#$%
 */

 Set StdText to "KGS!@#$%"

Zorn & Cobb Informational [Page 11]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 DesEncrypt(StdText, Clear, giving Cypher)
 }

A.4 DesEncrypt()

 DesEncrypt(
 IN 8-octet Clear,
 IN 7-octet Key,
 OUT 8-octet Cypher)
 {
 /*
 * Use the DES encryption algorithm [4] in ECB mode [9]
 * to encrypt Clear into Cypher such that Cypher can
 * only be decrypted back to Clear by providing Key.
 * Note that the DES algorithm takes as input a 64-bit
 * stream where the 8th, 16th, 24th, etc. bits are
 * parity bits ignored by the encrypting algorithm.
 * Unless you write your own DES to accept 56-bit input
 * without parity, you will need to insert the parity bits
 * yourself.
 */
 }

A.5 NtChallengeResponse()

 NtChallengeResponse(
 IN 8-octet Challenge,
 IN 0-to-256-unicode-char Password,
 OUT 24-octet Response)
 {
 NtPasswordHash(Password, giving PasswordHash)
 ChallengeResponse(Challenge, PasswordHash, giving Response)
 }

A.6 NtPasswordHash()

 NtPasswordHash(
 IN 0-to-256-unicode-char Password,
 OUT 16-octet PasswordHash)
 {
 /*
 * Use the MD4 algorithm [5] to irreversibly hash Password
 * into PasswordHash. Only the password is hashed without
 * including any terminating 0.
 */

Zorn & Cobb Informational [Page 12]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 }

A.7 ChallengeResponse()

 ChallengeResponse(
 IN 8-octet Challenge,
 IN 16-octet PasswordHash,
 OUT 24-octet Response)
 {
 Set ZPasswordHash to PasswordHash zero-padded to 21 octets

 DesEncrypt(Challenge,
 1st 7-octets of ZPasswordHash,
 giving 1st 8-octets of Response)

 DesEncrypt(Challenge,
 2nd 7-octets of ZPasswordHash,
 giving 2nd 8-octets of Response)

 DesEncrypt(Challenge,
 3rd 7-octets of ZPasswordHash,
 giving 3rd 8-octets of Response)
 }

A.8 LmEncryptedPasswordHash()

 LmEncryptedPasswordHash(
 IN 0-to-14-oem-char Password,
 IN 8-octet KeyValue,
 OUT 16-octet Cypher)
 {
 LmPasswordHash(Password, giving PasswordHash)

 PasswordHashEncryptedWithBlock(PasswordHash,
 KeyValue,
 giving Cypher)
 }

A.9 PasswordHashEncryptedWithBlock()

 PasswordHashEncryptedWithBlock(
 IN 16-octet PasswordHash,
 IN 8-octet Block,
 OUT 16-octet Cypher)
 {

Zorn & Cobb Informational [Page 13]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 DesEncrypt(1st 8-octets PasswordHash,
 1st 7-octets Block,
 giving 1st 8-octets Cypher)

 DesEncrypt(2nd 8-octets PasswordHash,
 1st 7-octets Block,
 giving 2nd 8-octets Cypher)
 }

A.10 NtEncryptedPasswordHash()

 NtEncryptedPasswordHash(IN 0-to-14-oem-char Password IN 8-octet
 Challenge OUT 16-octet Cypher) {
 NtPasswordHash(Password, giving PasswordHash)

 PasswordHashEncryptedWithBlock(PasswordHash,
 Challenge,
 giving Cypher)
 }

A.11 NewPasswordEncryptedWithOldNtPasswordHash()

 datatype-PWBLOCK
 {
 256-unicode-char Password
 4-octets PasswordLength
 }

 NewPasswordEncryptedWithOldNtPasswordHash(
 IN 0-to-256-unicode-char NewPassword,
 IN 0-to-256-unicode-char OldPassword,
 OUT datatype-PWBLOCK EncryptedPwBlock)
 {
 NtPasswordHash(OldPassword, giving PasswordHash)

 EncryptPwBlockWithPasswordHash(NewPassword,
 PasswordHash,
 giving EncryptedPwBlock)
 }

A.12 EncryptPwBlockWithPasswordHash()

 EncryptPwBlockWithPasswordHash(
 IN 0-to-256-unicode-char Password,
 IN 16-octet PasswordHash,

Zorn & Cobb Informational [Page 14]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 OUT datatype-PWBLOCK PwBlock)
 {

 Fill ClearPwBlock with random octet values
 PwSize = lstrlenW(Password) * sizeof(unicode-char)
 PwOffset = sizeof(ClearPwBlock.Password) - PwSize
 Move PwSize octets to (ClearPwBlock.Password + PwOffset) from Password
 ClearPwBlock.PasswordLength = PwSize
 Rc4Encrypt(ClearPwBlock,
 sizeof(ClearPwBlock),
 PasswordHash,
 sizeof(PasswordHash),
 giving PwBlock)
 }

A.13 Rc4Encrypt()

 Rc4Encrypt(
 IN x-octet Clear,
 IN integer ClearLength,
 IN y-octet Key,
 IN integer KeyLength,
 OUT x-octet Cypher)
 {
 /*
 * Use the RC4 encryption algorithm [6] to encrypt Clear of
 * length ClearLength octets into a Cypher of the same length
 * such that the Cypher can only be decrypted back to Clear
 * by providing a Key of length KeyLength octets.
 */
 }

A.14 OldNtPasswordHashEncryptedWithNewNtPasswordHash()

 OldNtPasswordHashEncryptedWithNewNtPasswordHash(
 IN 0-to-256-unicode-char NewPassword,
 IN 0-to-256-unicode-char OldPassword,
 OUT 16-octet EncryptedPasswordHash)
 {
 NtPasswordHash(OldPassword, giving OldPasswordHash)
 NtPasswordHash(NewPassword, giving NewPasswordHash)
 NtPasswordHashEncryptedWithBlock(OldPasswordHash,
 NewPasswordHash,
 giving EncryptedPasswordHash)
 }

Zorn & Cobb Informational [Page 15]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

A.15 NewPasswordEncryptedWithOldLmPasswordHash()

 NewPasswordEncryptedWithOldLmPasswordHash(
 IN 0-to-256-unicode-char NewPassword,
 IN 0-to-256-unicode-char OldPassword,
 OUT datatype-PWBLOCK EncryptedPwBlock)
 {
 LmPasswordHash(OldPassword, giving PasswordHash)

 EncryptPwBlockWithPasswordHash(NewPassword, PasswordHash,
 giving EncryptedPwBlock)
 }

A.16 OldLmPasswordHashEncryptedWithNewNtPasswordHash()

 OldLmPasswordHashEncryptedWithNewNtPasswordHash(
 IN 0-to-256-unicode-char NewPassword,
 IN 0-to-256-unicode-char OldPassword,
 OUT 16-octet EncryptedPasswordHash)
 {
 LmPasswordHash(OldPassword, giving OldPasswordHash)

 NtPasswordHash(NewPassword, giving NewPasswordHash)

 NtPasswordHashEncryptedWithBlock(OldPasswordHash, NewPasswordHash,
 giving EncrytptedPasswordHash)
 }

A.17 NtPasswordHashEncryptedWithBlock()

 NtPasswordHashEncryptedWithBlock(
 IN 16-octet PasswordHash,
 IN 16-octet Block,
 OUT 16-octet Cypher)
 {
 DesEncrypt(1st 8-octets PasswordHash,
 1st 7-octets Block,
 giving 1st 8-octets Cypher)

 DesEncrypt(2nd 8-octets PasswordHash,
 2nd 7-octets Block,
 giving 2nd 8-octets Cypher)
 }

Zorn & Cobb Informational [Page 16]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

Appendix B - Examples

B.1 Negotiation Examples

 Here are some examples of typical negotiations. The peer is on the
 left and the authenticator is on the right.

 The packet sequence ID is incremented on each authentication retry
 Response and on the change password response. All cases where the
 packet sequence ID is updated are noted below.

 Response retry is never allowed after Change Password. Change
 Password may occur after Response retry. The implied challenge form
 is shown in the examples, though all cases of "first challenge+23"
 should be replaced by the "C=cccccccccccccccc" challenge if
 authenticator supplies it in the Failure packet.

B.1.1 Successful authentication

 <- Challenge
 Response ->
 <- Success

B.1.2 Failed authentication with no retry allowed

 <- Challenge
 Response ->
 <- Failure (E=691 R=0)

B.1.3 Successful authentication after retry

 <- Challenge
 Response ->
 <- Failure (E=691 R=1), disable short timeout
 Response (++ID) to first challenge+23 ->
 <- Success

B.1.4 Failed hack attack with 3 attempts allowed

 <- Challenge
 Response ->
 <- Failure (E=691 R=1), disable short timeout
 Response (++ID) to first challenge+23 ->
 <- Failure (E=691 R=1), disable short timeout
 Response (++ID) to first challenge+23+23 ->

Zorn & Cobb Informational [Page 17]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

 <- Failure (E=691 R=0)

B.1.5 Successful authentication with password change

 <- Challenge
 Response ->
 <- Failure (E=648 R=0 V=2), disable short timeout
 ChangePassword (++ID) to first challenge ->
 <- Success

B.1.6 Successful authentication with retry and password change

 <- Challenge
 Response ->
 <- Failure (E=691 R=1), disable short timeout
 Response (++ID) to first challenge+23 ->
 <- Failure (E=648 R=0 V=2), disable short timeout
 ChangePassword (++ID) to first challenge+23 ->
 <- Success

B.2 Hash Example

Intermediate values for password "MyPw".

 8-octet Challenge:
 10 2D B5 DF 08 5D 30 41

 0-to-256-unicode-char NtPassword:
 4D 00 79 00 50 00 77 00

 16-octet NtPasswordHash:
 FC 15 6A F7 ED CD 6C 0E DD E3 33 7D 42 7F 4E AC

 24-octet NtChallengeResponse:
 4E 9D 3C 8F 9C FD 38 5D 5B F4 D3 24 67 91 95 6C
 A4 C3 51 AB 40 9A 3D 61

B.3 Example of DES Key Generation

DES uses 56-bit keys, expanded to 64 bits by the insertion of parity
bits. After the parity of the key has been fixed, every eighth bit is a
parity bit and the number of bits that are set (1) in each octet is odd;
i.e., odd parity. Note that many DES engines do not check parity,
however, simply stripping the parity bits. The following example
illustrates the values resulting from the use of the 16-octet
NTPasswordHash shown in Appendix B.2 to generate a pair of DES keys

Zorn & Cobb Informational [Page 18]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

(e.g., for use in the NtPasswordHashEncryptedWithBlock() described in
Appendix A.17).

 16-octet NtPasswordHash:
 FC 15 6A F7 ED CD 6C 0E DD E3 33 7D 42 7F 4E AC

 First "raw" DES key (initial 7 octets of password hash):
 FC 15 6A F7 ED CD 6C

 First parity-corrected DES key (eight octets):
 FD 0B 5B 5E 7F 6E 34 D9

 Second "raw" DES key (second 7 octets of password hash)
 0E DD E3 33 7D 42 7F

 Second parity-corrected DES key (eight octets):
 0E 6E 79 67 37 EA 08 FE

Zorn & Cobb Informational [Page 19]

RFC 2433 Microsoft PPP CHAP Extensions Ocotober 1998

Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Zorn & Cobb Informational [Page 20]

