
RFC 9623
Implementing Interfaces to Transport Services

Abstract
The Transport Services System enables applications to use transport protocols flexibly for
network communication and defines a protocol-independent Transport Services Application
Programming Interface (API) that is based on an asynchronous, event-driven interaction pattern.
This document serves as a guide to implementing such a system.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9623
Informational
January 2025
2070-1721
A. Brunstrom, Ed.
Karlstad University

T. Pauly, Ed.
Apple Inc.

R. Enghardt
Netflix

P.S. Tiesel
SAP SE

M. Welzl
University of Oslo

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9623

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Brunstrom, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9623
https://www.rfc-editor.org/info/rfc9623
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

2. Implementing Connection Objects

3. Implementing Preestablishment

3.1. Configuration-Time Errors

3.2. Role of System Policy

4. Implementing Connection Establishment

4.1. Structuring Candidates as a Tree

4.1.1. Branch Types

4.1.2. Branching Order-of-Operations

4.1.3. Sorting Branches

4.2. Candidate Gathering

4.2.1. Gathering Endpoint Candidates

4.3. Candidate Racing

4.3.1. Simultaneous

4.3.2. Staggered

4.3.3. Failover

4.4. Completing Establishment

4.4.1. Determining Successful Establishment

4.5. Establishing Multiplexed Connections

4.6. Handling Connectionless Protocols

4.7. Implementing Listeners

4.7.1. Implementing Listeners for Connected Protocols

4.7.2. Implementing Listeners for Connectionless Protocols

4.7.3. Implementing Listeners for Multiplexed Protocols

4

4

5

6

6

7

8

10

12

13

14

14

15

16

16

17

17

18

18

19

19

19

19

20

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 2

5. Implementing Sending and Receiving Data

5.1. Sending Messages

5.1.1. Message Properties

5.1.2. Send Completion

5.1.3. Batching Sends

5.2. Receiving Messages

5.3. Handling of Data for Fast-Open Protocols

6. Implementing Message Framers

6.1. Defining Message Framers

6.2. Sender-Side Message Framing

6.3. Receiver-Side Message Framing

7. Implementing Connection Management

7.1. Pooled Connection

7.2. Handling Path Changes

8. Implementing Connection Termination

9. Cached State

9.1. Protocol State Caches

9.2. Performance Caches

10. Specific Transport Protocol Considerations

10.1. TCP

10.2. MPTCP

10.3. UDP

10.4. UDP-Lite

10.5. UDP Multicast Receive

10.6. SCTP

11. IANA Considerations

12. Security Considerations

12.1. Considerations for Candidate Gathering

12.2. Considerations for Candidate Racing

20

20

20

22

22

22

23

23

24

26

26

27

28

28

29

29

30

30

31

32

33

34

35

35

36

39

39

39

39

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 3

13. References

13.1. Normative References

13.2. Informative References

Appendix A. API Mapping Template

Appendix B. Reasons for Errors

Appendix C. Existing Implementations

Acknowledgements

Authors' Addresses

40

40

40

42

43

44

45

45

1. Introduction
The Transport Services Architecture defines a system that allows applications to
flexibly use transport networking protocols. The API that such a system exposes to applications is
defined as the Transport Services API . This API is designed to be generic across
multiple transport protocols and sets of protocol features.

This document serves as a guide to implementing a system that provides a Transport Services
API. This guide offers suggestions to developers, but it is not prescriptive: implementations are
free to take any desired form as long as the API specification defined in is honored. It
is the job of an implementation of a Transport Services System to turn the requests of an
application into decisions on how to establish connections and how to transfer data over those
connections once established. The terminology used in this document is based on the
terminology defined in the Transport Services Architecture .

[RFC9621]

[RFC9622]

[RFC9622]

[RFC9621]

2. Implementing Connection Objects
The Connection objects that are exposed to applications for Transport Services are:

the Preconnection, the bundle of Properties that describes the application constraints on,
and preferences for, the transport;
the Connection, the basic object that represents a flow of data as Messages in either direction
between the Local and Remote Endpoints;
and the Listener, a passive waiting object that delivers new Connections.

Preconnection objects should be implemented as bundles of Properties that an application can
both read and write. A Preconnection object influences a Connection only at one point in time:
when the Connection is created. Connection objects represent the interface between the
application and the implementation to manage transport state and conduct data transfer. During
the process of establishment (Section 4), the Connection will not necessarily be immediately
bound to a transport protocol instance, since multiple candidate Protocol Stacks might be raced.

•

•

•

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 4

Once a Preconnection has been used to create an outbound Connection or a Listener, the
implementation should ensure that the copy of the Properties held by the Connection or Listener
cannot be mutated by the application making changes to the original Preconnection object. This
may involve the implementation performing a deep-copy, copying the object with all the objects
that it references.

Once the Connection is established, the Transport Services Implementation maps actions and
events to the details of the chosen Protocol Stack. For example, the same Connection object may
ultimately represent a single transport protocol instance (e.g., a TCP connection, a TLS session
over TCP, a UDP flow with fully specified Local and Remote Endpoint Identifiers, a DTLS session,
a Stream Control Transmission Protocol (SCTP) stream, a QUIC stream, or an HTTP/2 stream). The
Connection Properties held by a Connection or Listener are independent of other Connections
that are not part of the same Connection Group.

Connection establishment is only a local operation for connectionless protocols, which serves to
simplify the local send/receive functions and to filter the traffic for the specified addresses and
ports (for example, using UDP or UDP-Lite transport without a connection handshake
procedure).

Once Initiate has been called, the Selection Properties and Endpoint information of the created
Connection are immutable (i.e., an application is not able to later modify the Properties of a
Connection by manipulating the original Preconnection object). Listener objects are created with
a Preconnection, at which point their configuration should be considered immutable by the
implementation. The process of listening is described in Section 4.7.

[RFC8085]

3. Implementing Preestablishment
The preestablishment phase allows applications to specify Properties for the Connections that
they are about to make or to query the API about potential Connections they could make.

During preestablishment, the application specifies one or more Endpoints to be used for
communication as well as protocol preferences and constraints via Selection Properties and, if
desired, also Connection Properties. states that Connection Properties
should preferably be configured during preestablishment because they can serve as input to
decisions that are made by the implementation (e.g., the capacity profile can guide usage of a
protocol offering scavenger-type congestion control).

The implementation stores these Properties as a part of the Preconnection object for use during
Connection establishment. For Selection Properties that are not provided by the application, the
implementation uses the default values specified in the Transport Services API ().

Section 4 of [RFC9622]

[RFC9622]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 5

https://www.rfc-editor.org/rfc/rfc9622#section-4

3.1. Configuration-Time Errors
The Transport Services System should have a list of supported protocols available, each of which
has transport features reflecting the capabilities of the protocol. Once an application specifies its
Transport Properties, the Transport Services System matches the required and prohibited
Properties against the transport features of the available protocols (see
for the definition of Property Preferences).

In the following cases, failure should be detected during preestablishment:

A request by an application for Properties that cannot be satisfied by any of the available
protocols. For example, if an application requires perMsgReliability, but no such feature is
available in any protocol on the host running the Transport Services System, this should
result in an error.
A request by an application for Properties that are in conflict with each other, such as
specifying required and prohibited Properties that cannot be satisfied by any protocol. For
example, if an application prohibits reliability but then requires perMsgReliability, this
mismatch should result in an error.

To avoid allocating resources that are not needed, it is important that configuration-time errors
fail as early as possible.

Section 6.2 of [RFC9622]

•

•

3.2. Role of System Policy
The Properties specified during preestablishment have a close relationship to System Policy. The
implementation is responsible for combining and reconciling several different sources of
preferences when establishing Connections. These include, but are not limited to:

Application preferences, i.e., preferences specified during preestablishment via Selection
Properties.
Dynamic System Policy, i.e., policy compiled from internally and externally acquired
information about available network interfaces, supported transport protocols, and current/
previous Connections. Examples of ways to externally retrieve policy-support information
are through OS-specific statistics/measurement tools and tools that reside on middleboxes
and routers.
Default implementation policy, i.e., predefined policy by the OS or application.

In general, any protocol or path used for a Connection must conform to all three sources of
constraints. A violation that occurs at any of the policy layers should cause a protocol or path to
be considered ineligible for use. If such a violation prevents a Connection from being established,
this should be communicated to the application, e.g., via the EstablishmentError event. For an
example of application preferences leading to constraints, an application may prohibit the use of
metered network interfaces for a given Connection to avoid user cost. Similarly, the System
Policy at a given time may prohibit the use of such a metered network interface from the
application's process. Lastly, the implementation itself may default to disallowing certain
network interfaces unless explicitly requested by the application.

1.

2.

3.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 6

https://www.rfc-editor.org/rfc/rfc9622#section-6.2

It is expected that the database of system policies and the method of looking up these policies
will vary across various platforms. An implementation should attempt to look up the relevant
policies for the system in a dynamic way to make sure it reflects an accurate version of the
System Policy, since the system's policy regarding the application's traffic may change over time
due to user or administrative changes.

4. Implementing Connection Establishment
The process of establishing a network connection begins when an application expresses intent to
communicate with a Remote Endpoint by calling Initiate, at which point the Preconnection
object contains all constraints or requirements the application has configured. The establishment
process can be considered complete once there is at least one Protocol Stack that has completed
any required setup to the point that it can transmit and receive the application's data.

Connection establishment is divided into two top-level steps:

Candidate Gathering (defined in) to identify the paths, protocols,
and endpoints to use (see Section 4.2) and
Candidate Racing (defined in), in which the necessary protocol
handshakes are conducted so that the Transport Services System can select which set to use
(see Section 4.3).

Candidate Racing involves attempting multiple options for Connection establishment and
choosing the first option to succeed as the Protocol Stack to use for the Connection. These
attempts are usually staggered, with each next option starting after a delay; however, they can
also be performed in parallel or after failures occur.

For ease of illustration, this document structures the candidates for racing as a tree (see Section
4.1). This is not meant to restrict implementations from structuring racing candidates differently.

The simplest example of this process might involve identifying the single IP address to which the
implementation wishes to connect, using the system's current default path (i.e., using the default
interface), and starting a TCP handshake to establish a stream to the specified IP address.
However, each step may also differ depending on the requirements of the connection:

if the Endpoint Identifier is a hostname and port, then there may be multiple resolved
addresses that are available;
there may also be multiple paths available (in this case using an interface other than the
default system interface); and
some protocols may not need any transport handshake to be considered "established" (such
as UDP), while other connections may utilize layered protocol handshakes, such as TLS over
TCP.

Whenever an implementation has multiple options for Connection establishment, it can view the
set of all individual Connection establishment options as a single aggregate Connection
establishment. The aggregate set conceptually includes every valid combination of endpoints,
paths, and protocols. As an example, consider an implementation that initiates a TCP connection

• Section 4.2.1 of [RFC9621]

• Section 4.2.2 of [RFC9621]

•

•

•

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 7

https://www.rfc-editor.org/rfc/rfc9621#section-4.2.1
https://www.rfc-editor.org/rfc/rfc9621#section-4.2.2

to a hostname + port Endpoint Identifier and that has two valid interfaces available (Wi-Fi and
LTE). The hostname resolves to a single IPv4 address on the Wi-Fi network, to the same IPv4
address on the LTE network, and to a single IPv6 address. The aggregate set of Connection
establishment options can be viewed as follows, with the Endpoint Identifier abbreviated as
“EId”:

Any one of these subentries on the aggregate connection attempt would satisfy the original
application intent. The concern of this section is the algorithm defining which of these options to
try, when to try them, and in what order.

During Candidate Gathering (Section 4.2), an implementation prunes and sorts branches
according to the Selection Property Preferences (). First, it excludes all
protocols and paths that match a prohibited Property or do not match all required Properties.
Then, it will sort branches according to preferred Properties, avoided Properties, and, possibly,
other criteria.

Aggregate [EId: example.com:443] [Interface: Any] [Protocol: TCP]
|-> [EId: [3fff:23::1]:443] [Interface: Wi-Fi] [Protocol: TCP]
|-> [EId: 192.0.2.1:443] [Interface: LTE] [Protocol: TCP]
|-> [EId: [3fff:42::1]:443] [Interface: LTE] [Protocol: TCP]

Section 6.2 of [RFC9622]

4.1. Structuring Candidates as a Tree
As noted above, the consideration of multiple candidates in a gathering and racing process can
be conceptually structured as a tree; this terminological convention is used throughout this
document.

Each leaf node of the tree represents a single coherent connection attempt with an endpoint, a
network path, and a set of protocols that can directly negotiate and send data on the network.
Each node in the tree that is not a leaf represents a connection attempt that is either
underspecified or includes multiple distinct options. For example, when connecting on an IP
network, a connection attempt to a hostname and port is underspecified because the connection
attempt requires a resolved IP address as its Remote Endpoint Identifier. In this case, the node
represented by the connection attempt to the hostname is a parent node with child nodes for
each IP address. Similarly, an implementation that is allowed to connect using multiple
interfaces will have a parent node of the tree for the decision between the network paths with a
branch for each interface.

The example aggregate connection attempt above can be drawn as a tree by grouping the
addresses resolved on the same interface into branches:

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 8

https://www.rfc-editor.org/rfc/rfc9622#section-6.2

The rest of this section will use a notation scheme to represent this tree. The root node (or parent
node) of the tree will be represented by a single integer, such as "1". ("1" is used assuming that
this is the first connection made by the system; future connections created by the application
would allocate numbers in an increasing manner.) Each child of that node will have an integer
that identifies it, from 1 to the number of children. That child node will be uniquely identified by
concatenating its integer to its parent's identifier with a dot character (".") in between, such as
"1.1" and "1.2". Each node will be summarized by a tuple of three elements: endpoint, path
(labeled here by interface), and protocol. In Protocol Stacks, the layers are separated by a slash
character ("/") and ordered with the protocol closest to the application first. The above example
can now be written more succinctly as:

When an implementation is asked to establish a single connection, only one of the leaf nodes in
the candidate set is needed to transfer data. Thus, once a single leaf node becomes ready to use,
the Connection establishment tree is considered ready. One way to implement this is by having
every leaf node update the state of its parent node when it becomes ready until the root node of
the tree is ready, which then notifies the application that the Connection as a whole is ready to
use.

A Connection establishment tree may consist of only a single node, such as a connection attempt
to an IP address over a single interface with a single protocol.

A root node may also only have one child (or leaf) node, such as a when a hostname resolves to
only a single IP address.

 ||
 +============================+
 www.example.com:443/any path
 +============================+
 // \\
+=========================+ +=======================+
 www.example.com:443/Wi-Fi www.example.com:443/LTE
+=========================+ +=======================+
 || // \\
+======================+ +=================+ +====================+
 [3fff:23::1]:443/Wi-Fi 192.0.2.1:443/LTE [3fff:42::1]:443/LTE
+======================+ +=================+ +====================+

1 [www.example.com:443, any path, TCP]
 1.1 [www.example.com:443, Wi-Fi, TCP]
 1.1.1 [[2001:db8:23::1]:443, Wi-Fi, TCP]
 1.2 [www.example.com:443, LTE, TCP]
 1.2.1 [192.0.2.1:443, LTE, TCP]
 1.2.2 [[2001:db8.42::1]:443, LTE, TCP]

1 [[2001:db8:23::1]:443, Wi-Fi, TCP]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 9

1 [www.example.com:443, Wi-Fi, TCP]
 1.1 [[2001:db8:23::1]:443, Wi-Fi, TCP]

4.1.1. Branch Types

There are three types of branching from a parent node into one or more child nodes: Derived
Endpoints, network paths, and protocol options. Any parent node of the tree must use only one
type of branching.

4.1.1.1. Derived Endpoints
If a connection originally targets a single Endpoint Identifier, there may be multiple endpoint
candidates of different types that can be derived from the original. This creates an ordered list of
the derived endpoint candidates according to application preference, System Policy, and
expected performance.

DNS hostname-to-address resolution is the most common method of endpoint derivation. When
trying to connect to a hostname Endpoint Identifier on an IP network, the implementation
should send all applicable DNS queries. Commonly, this will include both A (IPv4) and AAAA
(IPv6) records if both address families are supported on the local interface. This can also include
SRV records , SVCB and HTTPS records , or other future record types. The
algorithm for ordering and racing these addresses should follow the recommendations in Happy
Eyeballs .

DNS-Based Service Discovery can also provide an endpoint derivation step. When
trying to connect to a named service, the client may discover one or more hostname and port
pairs on the local network using multicast DNS . These hostnames should each be
treated as a branch that can be attempted independently from other hostnames. Each of these
hostnames might resolve to one or more addresses, which would create multiple layers of
branching.

Applications can influence which derived Endpoints are allowed and preferred via Selection
Properties set on the Preconnection. For example, setting a preference for
useTemporaryLocalAddress would prefer the use of IPv6 over IPv4, and requiring
useTemporaryLocalAddress would eliminate IPv4 options since IPv4 does not support
temporary addresses.

[RFC2782] [RFC9460]

[RFC8305]

1 [www.example.com:443, Wi-Fi, TCP]
 1.1 [[2001:db8::1]:443, Wi-Fi, TCP]
 1.2 [192.0.2.1:443, Wi-Fi, TCP]
 1.3 [[2001:db8::2]:443, Wi-Fi, TCP]
 1.4 [[2001:db8::3]:443, Wi-Fi, TCP]

[RFC6763]

[RFC6762]

1 [term-printer._ipp._tcp.meeting.example.com, Wi-Fi, TCP]
 1.1 [term-printer.meeting.example.com:631, Wi-Fi, TCP]
 1.1.1 [31.133.160.18:631, Wi-Fi, TCP]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 10

4.1.1.2. Network Paths
If a client has multiple network paths available to it, e.g., a mobile client with interfaces for both
Wi-Fi and Cellular connectivity, it can attempt a connection over any of the paths. This represents
a branch point in the Connection establishment. Similar to a derived endpoint, the paths should
be ranked based on preference, policy, and performance. Attempts should be started on one path
(e.g., a specific interface) and then successively on other paths (or interfaces) after delays based
on the expected path RTT or other available metrics.

The same approach applies to any situation in which the client is aware of multiple links or
views of the network. A single interface may be shared by multiple network paths, each with a
coherent set of addresses, routes, DNS server, and more. A path may also represent a virtual
interface service such as a Virtual Private Network (VPN).

The list of available paths should be constrained by any requirements the application sets as well
as by the System Policy.

1 [192.0.2.1:443, any path, TCP]
 1.1 [192.0.2.1:443, Wi-Fi, TCP]
 1.2 [192.0.2.1:443, LTE, TCP]

4.1.1.3. Protocol Options
Differences in possible protocol compositions and options can also provide a branching point in
Connection establishment. This allows clients to be resilient to situations in which a certain
protocol is not functioning on a server or network.

This approach is commonly used for connections with optional proxy server configurations. A
single connection might have several options available: an HTTP-based proxy, a SOCKS-based
proxy, or no proxy. As above, these options should be ranked based on preference, System Policy,
and performance, and should be attempted in succession.

This approach also allows a client to attempt different sets of application and transport protocols
that, when available, could provide preferable features. For example, the protocol options could
involve QUIC over UDP on one branch and HTTP/2 over TLS over TCP on the
other:

1 [www.example.com:443, any path, HTTP/TCP]
 1.1 [192.0.2.8:443, any path, HTTP/HTTP Proxy/TCP]
 1.2 [192.0.2.7:10234, any path, HTTP/SOCKS/TCP]
 1.3 [www.example.com:443, any path, HTTP/TCP]
 1.3.1 [192.0.2.1:443, any path, HTTP/TCP]

[RFC9000] [RFC9113]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 11

Another example is racing SCTP with TCP:

Implementations that support racing protocols and protocol options should maintain a history of
which protocols and protocol options were successfully established on a per-network and per-
endpoint basis (see Section 9.2). This information can influence future racing decisions to
prioritize or prune branches.

1 [www.example.com:443, any path, HTTP]
 1.1 [www.example.com:443, any path, HTTP3/QUIC/UDP]
 1.1.1 [192.0.2.1:443, any path, HTTP3/QUIC/UDP]
 1.2 [www.example.com:443, any path, HTTP2/TLS/TCP]
 1.2.1 [192.0.2.1:443, any path, HTTP2/TLS/TCP]

1 [www.example.com:4740, any path, reliable-inorder-stream]
 1.1 [www.example.com:4740, any path, SCTP]
 1.1.1 [192.0.2.1:4740, any path, SCTP]
 1.2 [www.example.com:4740, any path, TCP]
 1.2.1 [192.0.2.1:4740, any path, TCP]

4.1.2. Branching Order-of-Operations

Branch types ought to occur in a specific order relative to one another to avoid creating leaf
nodes with invalid or incompatible settings. In the example above, it would be invalid to branch
for derived endpoints (the DNS results for www.example.com) before branching between
interface paths since there are situations when the results will be different across networks due
to private names or different supported IP versions. Implementations need to be careful to
branch in a consistent order that results in usable leaf nodes whenever there are multiple
branch types that could be used from a single node.

This document recommends the following order of operations for branching:

Network paths
Protocol options
Derived Endpoints

where a lower number indicates higher precedence and, therefore, higher placement in the tree.
Branching between paths is the first in the list because results across multiple interfaces are
likely not related to one another: endpoint resolution may return different results, especially
when using locally resolved host and service names and the protocols that are supported and
preferred may differ across interfaces. Thus, if multiple paths are attempted, the overall
Connection establishment process can be seen as a race between the available paths or
interfaces.

Protocol options are next checked in order. Whether or not a set of protocols, or protocol-specific
options, can successfully connect is generally not dependent on which specific IP address is used.
Furthermore, the Protocol Stacks being attempted may influence or altogether change the

1.
2.
3.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 12

Endpoint Identifiers being used. Adding a proxy to a connection's branch will change the
Endpoint Identifier to the proxy's IP address or hostname. Choosing an alternate protocol may
also modify the ports that should be selected.

Branching for derived endpoints is the final step and may have multiple layers of derivation or
resolution, such as DNS service resolution and DNS hostname resolution.

For example, if the application has indicated both a preference for Wi-Fi over LTE and for a
feature only available in SCTP, branches will first be sorted according to path selection, with Wi-
Fi attempted as the first path. Then, branches with SCTP will be attempted within their subtree
according to the Properties influencing protocol selection. However, if the implementation has
current cache information that SCTP is not available on the path over Wi-Fi, there would be no
SCTP node in the Wi-Fi subtree. Here, the path over Wi-Fi will be attempted first, and, if
connection establishment succeeds, TCP will be used. Thus, the Selection Property preferring Wi-
Fi takes precedence over the Property that led to a preference for SCTP.

1. [www.example.com:80, any path, reliable-inorder-stream]
1.1 [192.0.2.1:443, Wi-Fi, reliable-inorder-stream]
1.1.1 [192.0.2.1:443, Wi-Fi, TCP]
1.2 [192.0.3.1:443, LTE, reliable-inorder-stream]
1.2.1 [192.0.3.1:443, LTE, SCTP]
1.2.2 [192.0.3.1:443, LTE, TCP]

Low Latency/Interactive:

4.1.3. Sorting Branches

Implementations should sort the branches of the tree of connection options in order of their
preference rank from most preferred to least preferred as specified by Selection Properties

. Leaf nodes on branches with higher rankings represent connection attempts that will
be raced first.

In addition to the Properties provided by the application, an implementation may include
additional criteria such as cached performance estimates (see Section 9.2) or System Policy (see
Section 3.2) in the ranking. Two examples of how Selection and Connection Properties may be
used to sort branches are provided below:

"Interface Instance or Type" (Property name interface):
If the application specifies an interface type to be preferred or avoided, implementations
should accordingly rank the paths. If the application specifies an interface type to be required
or prohibited, an implementation is expected to exclude the nonconforming paths.

"Capacity Profile" (Property name connCapacityProfile):
An implementation can use the capacity profile to prefer paths that match an application's
expected traffic profile. This match will use cached performance estimates; see Section 9.2.
Some examples of path preferences based on capacity profiles include:

Prefer paths with the lowest expected Round-Trip Time (RTT),
based on observed RTT estimates;

[RFC9622]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 13

Low Latency/Non-Interactive:

Constant-Rate Streaming:

Capacity-Seeking:

Prefer paths with a low expected Round-Trip Time (RTT)
and possible delay variation;

Prefer paths that are expected to satisfy the requested stream
send or receive bitrate based on the observed maximum throughput;

Prefer adapting to paths to determine the highest available capacity
based on the observed maximum throughput.

As another example, branch sorting can also be influenced by bounds on the send or receive rate
(Selection Properties minSendRate / minRecvRate / maxSendRate / maxRecvRate): if the
application indicates a bound on the expected send or receive bitrate, an implementation may
prefer a path that can likely provide the desired bandwidth, based on cached maximum
throughput (see Section 9.2). The application may know the send or receive bitrate from
metadata in adaptive HTTP streaming, such as MPEG-DASH.

Implementations process the Properties () in the following order:
Prohibit, Require, Prefer, Avoid. If Selection Properties contain any prohibited Properties, the
implementation should first purge branches containing nodes with these Properties. For
required Properties, it should only keep branches that satisfy these requirements. Finally, it
should order the branches according to the preferred Properties and use any avoided Properties
as a tiebreaker. When ordering branches, an implementation can give more weight to Properties
that the application has explicitly set rather than to the Properties that are set by default.

The available protocols and paths on a specific system and in a specific context can change;
therefore, the result of sorting and the outcome of racing may vary, even when using the same
Selection and Connection Properties. However, an implementation ought to provide a consistent
outcome to applications, e.g., by preferring protocols and paths that are already used by existing
Connections that specified similar Properties.

Section 6.2 of [RFC9622]

4.2. Candidate Gathering
The step of gathering candidates involves identifying which paths, protocols, and endpoints may
be used for a given Connection. This list is determined by the requirements, prohibitions,
preferences, and avoidances of the application as specified in the Selection Properties.

4.2.1. Gathering Endpoint Candidates

Both Local and Remote Endpoint Candidates must be discovered during Connection
establishment. To support Interactive Connectivity Establishment (ICE) , or similar
protocols that involve out-of-band indirect signaling to exchange candidates with the Remote
Endpoint, it is important to query the set of candidate Local Endpoints and provide the Protocol
Stack with a set of candidate Remote Endpoints before the Local Endpoint attempts to establish
connections.

[RFC8445]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 14

https://www.rfc-editor.org/rfc/rfc9622#section-6.2

4.2.1.1. Local Endpoint Candidates
The set of possible Local Endpoints is gathered. In a simple case, this merely enumerates the local
interfaces and protocols and allocates ephemeral source ports. For example, a system that has
Wi-Fi and Ethernet and supports IPv4 and IPv6 might gather four candidate Local Endpoints
(IPv4 on Ethernet, IPv6 on Ethernet, IPv4 on Wi-Fi, and IPv6 on Wi-Fi) that can form the source
for a transient.

If NAT traversal is required, the process of gathering Local Endpoints becomes broadly
equivalent to the ICE Candidate Gathering phase (see). The endpoint
determines its server-reflexive Local Endpoints (i.e., the translated address of a Local Endpoint,
on the other side of a NAT, e.g., via a STUN server) and relayed Local Endpoints (e.g.,
via a TURN server or other relay) for each interface and network protocol. These are
added to the set of candidate Local Endpoint Identifiers for this connection.

Gathering Local Endpoints is primarily a local operation, although it might involve exchanges
with a STUN server to derive server-reflexive Local Endpoints or with a TURN server or other
relay to derive relayed Local Endpoints. However, it does not involve communication with the
Remote Endpoint.

Section 5.1.1 of [RFC8445]

[RFC8489]
[RFC8656]

4.2.1.2. Remote Endpoint Candidates
The Remote Endpoint Identifier is typically a name that needs to be resolved into a set of possible
addresses that can be used for communication. Resolving the Remote Endpoint is the process of
recursively performing such name lookups, until fully resolved, to return the set of candidates
for the Remote Endpoint of this Connection.

How this resolution is done will depend on the type of the Remote Endpoint and can also be
specific to each Local Endpoint. A common case is when the Remote Endpoint Identifier is a DNS
name, in which case, it is resolved to give a set of IPv4 and IPv6 addresses representing that
name. Some types of Remote Endpoint Identifiers might require more complex resolution.
Resolving the Remote Endpoint for a peer-to-peer connection might involve communication with
a rendezvous server. The server, in turn, contacts the peer to gain consent to communicate and
retrieve its set of candidate Local Endpoints. These Endpoints are returned and form the
candidate remote addresses for contacting that peer.

Resolving the Remote Endpoint is not a local operation. It will involve a directory service and can
require communication between the Remote Endpoint and a rendezvous server as well as the
exchange of peer addresses. This can expose some or all of the candidate Local Endpoints to the
Remote Endpoint.

4.3. Candidate Racing
The primary goal of the Candidate Racing process is to successfully negotiate a Protocol Stack to
an Endpoint over an interface to connect a single leaf node of the tree with as little delay and as
few unnecessary connection attempts as possible. Optimizing these two factors improves the
user experience, while minimizing network load.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 15

https://www.rfc-editor.org/rfc/rfc8445#section-5.1.1

This section covers the dynamic aspect of Connection establishment. The tree described above is
a useful conceptual and architectural model. However, an implementation is unable to know all
of the nodes that will be used until steps like name resolution have occurred; many of the
possible branches ultimately might not be attempted.

There are three different approaches to racing the attempts for different nodes of the Connection
establishment tree:

Simultaneous
Staggered
Failover

Each approach is appropriate in different use cases and branch types. However, to avoid
consuming unnecessary network resources, implementations should not use simultaneous
racing as a default approach.

The timing algorithms for racing should remain independent across branches of the tree. Any
timer or racing logic is isolated to a given parent node and is not ordered precisely with regard to
children of other nodes.

1.
2.
3.

4.3.1. Simultaneous

Simultaneous racing is when multiple alternate branches are started without waiting for any one
branch to make progress before starting the next alternative. This means the attempts are
effectively simultaneous. Simultaneous racing should be avoided by implementations since it
consumes extra network resources and establishes state that might not be used.

4.3.2. Staggered

Staggered racing can be used whenever a single node of the tree has multiple child nodes. Based
on the order determined when building the tree, the first child node will be initiated
immediately, followed by the next child node after some delay. Once that second child node is
initiated, the third child node (if present) will begin after another delay, and so on until all child
nodes have been initiated or one of the child nodes successfully completes its negotiation.

Staggered racing attempts can proceed in parallel. Implementations should not terminate an
earlier child connection attempt upon starting a secondary child.

If a child node fails to establish connectivity (as in Section 4.4.1) before the delay time has
expired for the next child, the next child should be started immediately.

Staggered racing between IP addresses for a generic Connection should follow the Happy
Eyeballs algorithm described in . Guidance for racing when performing ICE can be
found in .

Generally, the delay before starting a given child node ought to be based on the length of time the
previously started child node is expected to take before it succeeds or makes progress in
connection establishment. Algorithms like Happy Eyeballs choose a delay based on how long the
transport connection handshake is expected to take. When performing staggered races in

[RFC8305]
[RFC8421]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 16

multiple branch types (such as racing between network interfaces and then racing between IP
addresses), a longer delay may be chosen for some branch types. For example, when racing
between network interfaces, the delay should also take into account the amount of time it takes
to prepare the network interface (such as radio association) and name resolution over that
interface in addition to the delay that would be added for a single transport connection
handshake.

Since the staggered delay can be chosen based on dynamic information, such as predicted RTT,
implementations should define upper and lower bounds for delay times. These bounds are
implementation specific and may differ based on which branch type is being used.

4.3.3. Failover

If an implementation or application has a strong preference for one branch over another, the
branching node may choose to wait until one child has failed before starting the next. Failure of
a leaf node is determined by its protocol negotiation failing or timing out; failure of a parent
branching node is determined by all of its children failing.

An example in which failover is recommended is a race between a preferred Protocol Stack that
uses a proxy and an alternate Protocol Stack that bypasses the proxy. Failover is useful if the
proxy is down or misconfigured, but any more aggressive type of racing may end up
unnecessarily avoiding a proxy that was preferred by policy.

4.4. Completing Establishment
The process of Connection establishment completes when one leaf node of the tree has
successfully completed negotiation with the Remote Endpoint or when all nodes of the tree have
failed to connect. The first leaf node to complete its connection is then used by the application to
send and receive data. This is signaled to the application using the Ready event in the API
().

Successes and failures of a given attempt should be reported up to parent nodes (toward the root
of the tree). For example, in the following case, if 1.1.1 fails to connect, it reports the failure to 1.1.
Since 1.1 has no other child nodes, it also has failed and reports that failure to 1. Because 1.2 has
not yet failed, 1 is not considered to have failed. Since 1.2 has not yet started, it is started and the
process continues. Similarly, if 1.1.1 successfully connects, then it marks 1.1 as connected, which
propagates to the root node 1. At this point, the Connection as a whole is considered to be
successfully connected and ready to process application data.

If a leaf node has successfully completed its connection, all other attempts should be made
ineligible for use by the application for the original request. New connection attempts that
involve transmitting data on the network ought not to be started after another leaf node has

Section 7.1 of [RFC9622]

1 [www.example.com:443, Any, TCP]
 1.1 [www.example.com:443, Wi-Fi, TCP]
 1.1.1 [192.0.2.1:443, Wi-Fi, TCP]
 1.2 [www.example.com:443, LTE, TCP]
...

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 17

https://www.rfc-editor.org/rfc/rfc9622#section-7.1

already successfully completed because the Connection as a whole has now been established. An
implementation could choose to let certain handshakes and negotiations complete to gather
metrics that influence future connections. Keeping additional connections is generally not
recommended because those attempts were slower to connect and may exhibit less desirable
properties.

4.4.1. Determining Successful Establishment

On a per-protocol basis, implementations may select different criteria by which a leaf node is
considered to be successfully connected. If the only protocol being used is a transport protocol
with a clear handshake, like TCP, then the obvious choice is to declare that node "connected"
when the three-way handshake completes. If the only protocol being used is a connectionless
protocol, like UDP, the implementation may consider the node fully "connected" the moment it
determines a route is present, before sending any packets on the network, see further in Section
4.6.

Depending on the protocols involved, there is no guarantee that the Remote Endpoint will be
notified when the Initiate action is called without any Messages being sent at the same time.
Therefore, a passive Endpoint's application may not receive a ConnectionReceived event until it
receives the first Message on the new Connection.

For Protocol Stacks with multiple handshakes, the decision becomes more nuanced. If the
Protocol Stack involves both TLS and TCP, an implementation could determine that a leaf node is
connected after the TCP handshake is complete, or it can wait for the TLS handshake to complete
as well. The benefit of declaring completion when the TCP handshake finishes, and thus stopping
the race for other branches of the tree, is reduced burden on the network and Remote Endpoints
from further connection attempts that are likely to be abandoned. On the other hand, by waiting
until the TLS handshake is complete, an implementation avoids the scenario in which a TCP
handshake completes quickly, but TLS negotiation is either very slow or fails altogether in
particular network conditions or to a particular endpoint. To avoid the issue of TLS possibly
failing, the implementation should not generate a Ready event for the Connection until the TLS
handshake is complete.

If all of the leaf nodes fail to connect during racing, i.e., none of the configurations that satisfy all
requirements given in the Transport Properties actually work over the available paths, then the
Transport Services System should report an EstablishmentError to the application. An
EstablishmentError event should also be generated if the Transport Services System finds no
usable candidates to race.

4.5. Establishing Multiplexed Connections
Multiplexing several Connections over a single underlying transport connection requires that the
multiplexed Connections belong to the same Connection Group (as is indicated by the application
using the Clone action). When the underlying transport connection supports multistreaming, the
Transport Services System can map each Connection in the Connection Group to a different
stream of this connection.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 18

For such streams, there is often no explicit connection establishment procedure for the new
stream prior to sending data on it (e.g., with SCTP). In this case, the same considerations apply to
determining stream establishment as apply to establishing a UDP connection, as discussed in
Section 4.4.1. This means that there might not be any "establishment" message (like a TCP SYN).

4.6. Handling Connectionless Protocols
While protocols that use an explicit handshake to validate a connection to a peer can be used for
racing multiple establishment attempts in parallel, connectionless protocols such as raw UDP do
not offer a way to validate the presence of a peer or the usability of a Connection without
application feedback. An implementation should consider such a Protocol Stack to be established
as soon as the Transport Services System has selected a path on which to send data.

However, this can cause a problem if a specific peer is not reachable over the network using the
connectionless protocol or data cannot be exchanged with the peer for any other reason. To
handle the lack of an explicit handshake in the underlying protocol, an application can use a
Message Framer (Section 6) on top of a connectionless protocol to only mark a specific
connection attempt as ready when some data has been received or after some application-level
handshake has been performed by the Message Framer.

4.7. Implementing Listeners
When an implementation is asked to Listen, it registers with the system to wait for incoming
traffic to the Local Endpoint. If no Local Endpoint Identifier is specified, the implementation
should use an ephemeral port.

If the Selection Properties do not require a single network interface or path but allow the use of
multiple paths, the Listener object should register for incoming traffic on all of the network
interfaces or paths that conform to the Properties. The set of available paths can change over
time, so the implementation should monitor network path changes and change the registration
of the Listener across all usable paths as appropriate. When using multiple paths, the Listener is
generally expected to use the same port for listening on each.

If the Selection Properties allow multiple protocols to be used for listening and the
implementation supports it, the Listener object should support receiving inbound connections
for each eligible protocol on each eligible path.

4.7.1. Implementing Listeners for Connected Protocols

Connected protocols such as TCP and TLS-over-TCP have a strong mapping between the Local
and Remote Endpoint Identifiers (four-tuple) and their protocol connection state. These map to
Connection objects. Whenever a new inbound handshake is being started, the Listener should
generate a new Connection object and pass it to the application.

4.7.2. Implementing Listeners for Connectionless Protocols

Connectionless protocols such as UDP and UDP-Lite generally do not provide the same
mechanisms that connected protocols do to offer Connection objects. Implementations should
wait for incoming packets for connectionless protocols on a listening port and should perform

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 19

four-tuple matching of packets to existing Connection objects if possible. If a matching
Connection object does not exist, an incoming packet from a connectionless protocol should
cause a new Connection object to be created.

4.7.3. Implementing Listeners for Multiplexed Protocols

Protocols that provide multiplexing of streams can listen for entirely new connections as well as
for new subconnections (streams of an already-existing connection). A new stream arrival on an
existing connection is presented to the application as a new Connection. This new Connection is
grouped with all other Connections that are multiplexed via the same protocol.

5. Implementing Sending and Receiving Data
The most basic mapping for sending a Message is an abstraction of datagrams, in which the
transport protocol naturally deals in discrete packets (such as UDP). Each Message here
corresponds to a single datagram.

For protocols that expose byte-streams (such as TCP), the only delineation provided by the
protocol is the end of the stream in a given direction. Each Message in this case corresponds to
the entire stream of bytes in a direction. These Messages may be quite long, in which case they
can be sent in multiple parts.

Protocols that provide framing (such as length-value protocols, or protocols that use delimiters
like HTTP/1.1) may support Message sizes that do not fit within a single datagram. Each Message
for framing protocols corresponds to a single frame, which may be sent either as a complete
Message in the underlying protocol or in multiple parts.

Messages themselves generally consist of bytes passed in the messageData parameter intended to
be processed at an application layer. However, Message objects presented through the API can
carry associated Message Properties passed through the messageContext parameter. When these
are Protocol-specific Properties, they can include metadata that exists separately from a byte
encoding. For example, these Properties can include name-value pairs of information, like HTTP
header fields. In such cases, Messages might be "empty" insofar as they contain zero bytes in the
messageData parameter, but they can still include data in the messageContext that is interpreted
by the Protocol Stack.

5.1. Sending Messages
The effect of the application sending a Message is determined by the top-level protocol in the
established Protocol Stack. That is, if the top-level protocol provides an abstraction of framed
Messages over a connection, the receiving application will be able to obtain multiple Messages
on that connection, even if the framing protocol is built on a byte-stream protocol like TCP.

5.1.1. Message Properties

The API allows various Properties to be associated with each Message, which should be
implemented as discussed below.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 20

msgLifetime:

msgPriority:

msgOrdered:

safelyReplayable:

final:

msgChecksumLen:

msgReliable:

msgCapacityProfile:

This should be implemented by removing the Message from the queue of
pending Messages after the Lifetime has expired. A queue of pending Messages within the
Transport Services Implementation that have yet to be handed to the Protocol Stack can
always support this Property, but once a Message has been sent into the send buffer of a
protocol, only certain protocols may support removing it from their send buffer. For example,
a Transport Services Implementation cannot remove bytes from a TCP send buffer, while it
can remove data from an SCTP send buffer using the partial reliability extension .
When there is no standing queue of Messages within the system, and the Protocol Stack does
not support the removal of a Message from the stack's send buffer, this Property may be
ignored.

This represents the ability to prioritize a Message over other Messages. This can
be implemented by the Transport Services System by reordering Messages that have yet to be
handed to the Protocol Stack or by giving relative priority hints to protocols that support
priorities per Message. For example, an implementation of HTTP/2 could choose to send
Messages of different priority on streams of different priority.

When this is false, it disables the requirement of in-order delivery for protocols
that support configurable ordering. When the Protocol Stack does not support configurable
ordering, this Property may be ignored.

When this is true, it means that the Message can be used by a transport
mechanism that might deliver it multiple times -- e.g., as a result of racing multiple transports
or as part of TCP Fast Open (TFO). Also, protocols that do not protect against duplicated
Messages, such as UDP (when used directly, without a protocol layered atop), can only be used
with Messages that are safely replayable. When a Transport Services System is permitted to
replay Messages, replay protection could be provided by the application.

When this is true, it means that the sender will not send any further Messages. The
Connection need not be closed (if the Protocol Stack supports half-closed operations, like TCP).
Any Messages sent after a Message marked Final will result in a SendError.

When this is set to any value other than Full Coverage, it sets the minimum
protection in protocols that allow limiting the checksum length (e.g., UDP-Lite). If the Protocol
Stack does not support checksum length limitation, this Property may be ignored.

When true, this Property specifies that the Message must be reliably transmitted.
When false, and if unreliable transmission is supported by the underlying protocol, then the
Message should be unreliably transmitted. If the underlying protocol does not support
unreliable transmission, the Message should be reliably transmitted.

When true, this expresses a wish to override the Generic Connection
Property connCapacityProfile for this Message. Depending on the value, this can, for
example, be implemented by changing the Differentiated Services Code Point (DSCP) value of
the associated packet (note that the guidelines in apply; for example,
the DSCP value should not be changed for different packets within a reliable transport
protocol session or DCCP connection).

[RFC8303]

Section 6 of [RFC7657]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 21

https://www.rfc-editor.org/rfc/rfc7657#section-6

noFragmentation:

noSegmentation:

Setting this avoids network-layer fragmentation. Messages exceeding the
transport's current estimate of its maximum packet size (the
singularTransmissionMsgMaxLen Connection Property) can result in transport segmentation
when permitted or generate an error. When used with transports running over IPv4, the
Don't Fragment (DF) bit should be set to avoid on-path IP fragmentation .

When set, this Property limits the Message size to the transport's current
estimate of its maximum packet size (the singularTransmissionMsgMaxLen Connection
Property). Messages larger than this size generate an error. Setting this avoids transport-layer
segmentation and network-layer fragmentation. When used with transports running over
IPv4, the DF bit should be set to avoid on-path IP fragmentation ().

[RFC8304]

[RFC8304]

5.1.2. Send Completion

The application should be notified (using a Sent, Expired, or SendError event) whenever a
Message or partial Message has been consumed by the Protocol Stack or has failed to send. The
time at which a Message is considered to have been consumed by the Protocol Stack may vary
depending on the protocol. For example, for a basic datagram protocol like UDP, this may
correspond to the time when the packet is sent into the interface driver. For a protocol that
buffers data in queues, like TCP, this may correspond to when the data has entered the send
buffer. The time at which a Message failed to send is when the Transport Services
Implementation (including the Protocol Stack) has experienced a failure related to sending; this
can depend on protocol-specific timeouts.

5.1.3. Batching Sends

Sending multiple Messages can incur high overhead if each needs to be enqueued separately
(e.g., each Message might involve a context switch between the application and the Transport
Services System). To avoid this, the application can indicate a batch of Send actions through the
API. When this is used, the implementation can defer the processing of Messages until the batch
is complete.

5.2. Receiving Messages
Similar to sending, receiving a Message is determined by the top-level protocol in the established
Protocol Stack. The main difference with receiving is that the size and boundaries of the Message
are not known beforehand. The application can communicate the parameters for the Message in
its Receive action, which can help the Transport Services Implementation know how much data
to deliver and when. For example, if the application only wants to receive a complete Message,
the implementation should wait until an entire Message (datagram, stream, or frame) is read
before delivering any Message content to the application. This requires the implementation to
understand where Messages end, either via a supplied Message Framer or because the top-level
protocol in the established Protocol Stack preserves Message boundaries. The application can
also control the flow of received data by specifying the minimum and maximum number of bytes
of Message content it wants to receive at one time.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 22

If a Connection finishes before a requested Receive action can be satisfied, the Transport
Services System should deliver any outstanding partial Message content; if none is available, the
system should indicate that there will be no additional received Messages.

5.3. Handling of Data for Fast-Open Protocols
Several protocols allow sending higher-level protocol or application data during their protocol
establishment, such as TFO and TLS 1.3 . This approach is referred to as
sending Zero-RTT (0-RTT) data. This is a desirable feature, but it poses challenges to an
implementation that uses racing during Connection establishment.

The application can express its preference for sending Messages as 0-RTT data by using the
zeroRttMsg Selection Property on the Preconnection. Then, the application can provide the
Message to send as 0-RTT data via the InitiateWithSend action. In order to be sent as 0-RTT
data, the Message needs to be marked with the safelyReplayable Property. In general, 0-RTT
data may be replayed (for example, if a TCP SYN contains data, and the SYN is retransmitted, the
data will be retransmitted as well but may be considered a new connection instead of a
retransmission). When racing connections, different leaf nodes have the opportunity to send the
same data independently. If data is truly safely replayable, this is permissible.

Once the application has provided its 0-RTT data, a Transport Services Implementation should
keep a copy of this data and provide it to each new leaf node that is started and for which a
protocol instance supporting 0-RTT is being used. Note that the amount of data that can actually
be sent as 0-RTT data varies by protocol, so any given Protocol Stack might only consume part of
the saved data prior to becoming established. The implementation needs to keep track of how
much data a particular Protocol Stack has consumed and ensure that any pending 0-RTT-eligible
data from the application is handled before subsequent Messages.

It is also possible for Protocol Stacks within a particular leaf node to use a 0-RTT handshake in a
lower-level protocol without any safely replayable application data if a higher-level protocol in
the stack has idempotent handshake data to send. For example, TFO could use a Client Hello from
TLS as its 0-RTT data without any data being provided by the application.

0-RTT handshakes often rely on previous state, such as TFO cookies, previously established TLS
tickets, or out-of-band distributed pre-shared keys (PSKs). Implementations should be aware of
security concerns around using these tokens across multiple addresses or paths when racing. In
the case of TLS, any given ticket or PSK should only be used on one leaf node, since servers will
likely reject duplicate tickets in order to prevent replays (see). If
implementations have multiple tickets available from a previous connection, each leaf node
attempt can use a different ticket. In effect, each leaf node will send the same early application
data, but the data will be encoded (encrypted) differently on the wire.

[RFC7413] [RFC8446]

Section 8.1 of [RFC8446]

6. Implementing Message Framers
Message Framers are functions that define simple transformations between application Message
data and raw transport protocol data. Generally, a Message Framer implements a simple
application protocol that can be provided either by the Transport Services implementation or by

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 23

https://www.rfc-editor.org/rfc/rfc8446#section-8.1

the application. It is optional for Transport Services Implementations to provide Message
Framers: the API specification does not prescribe any particular Message Framers to
be implemented. A Framer can encapsulate or encode outbound Messages, decapsulate or
decode inbound data into Messages, and implement parts of protocols that do not directly map to
application Messages (such as protocol handshakes or preludes before Message exchange).

While many protocols can be represented as Message Framers, for the purposes of the Transport
Services API, these are ways for applications or application frameworks to define their own
Message parsing to be included within a Connection's Protocol Stack. As an example, TLS is a
protocol that is by default built into the Transport Services API, even though it could also serve
the purpose of framing data over TCP.

Most Message Framers fall into one of two categories:

Header-prefixed record formats, such as a basic Type-Length-Value (TLV) structure
Delimiter-separated formats, such as HTTP/1.1

Common Message Framers can be provided by a Transport Services Implementation, but an
implementation ought to allow custom Message Framers to be defined by the application or some
other piece of software. This section describes one possible API for defining Message Framers as
an example.

[RFC9622]

•
•

6.1. Defining Message Framers
A Message Framer is primarily defined by the code that handles events for a Framer
implementation, specifically how it handles inbound and outbound data parsing. The function
that implements custom framing logic will be referred to as the "Framer Implementation", which
may be provided by a Transport Services Implementation or the application itself. The Message
Framer holds a reference to the object or function within the main Connection implementation
that delivers events to the custom Framer implementation whenever data is ready to be parsed
or framed.

The API examples in this section use the notation conventions for the Transport Services API
defined in .

The Transport Services Implementation needs to ensure that all of the events and actions taken
on a Message Framer are synchronized to ensure consistent behavior. For example, some of the
actions defined below (such as PrependFramer and StartPassthrough) modify how data flows
in a Protocol Stack and require synchronization with sending and parsing data in the Message
Framer.

When a Connection establishment attempt begins, an event can be delivered to notify the Framer
implementation that a new Connection is being created. Similarly, a Stop event can be delivered
when a Connection is being torn down. The Framer implementation can use the Connection
object to look up specific Properties of the Connection or the network being used that may
influence how to frame Messages.

Section 1.1 of [RFC9622]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 24

https://www.rfc-editor.org/rfc/rfc9622#section-1.1

When a Message Framer generates a Start event, the Framer implementation has the
opportunity to start writing some data prior to the Connection delivering its Ready event. This
allows the implementation to communicate control data to the Remote Endpoint that can be used
to parse Messages.

Once the Framer implementation has completed its setup or handshake, it can indicate to the
application that it is ready for handling data with this call.

Similarly, when a Message Framer generates a Stop event, the Framer implementation has the
opportunity to write some final data or clear up its local state before the Closed event is
delivered to the application. The Framer implementation can indicate that it has finished with
this call.

If the implementation encounters a fatal error at any time, it can also cause the Connection to
fail and provide an error.

Should the Framer implementation deem the candidate selected during racing unsuitable, it can
signal this to the Transport Services API by failing the Connection prior to marking it as ready. If
there are no other candidates available, the Connection will fail. Otherwise, the Connection will
select a different candidate and the Message Framer will generate a new Start event.

Before an implementation marks a Message Framer as ready, it can also dynamically add a
protocol or Framer above it in the stack. This allows protocols that need to add TLS conditionally,
like STARTTLS , to modify the Protocol Stack based on a handshake result.

A Message Framer might also choose to go into a passthrough mode once an initial exchange or
handshake has been completed, such as the STARTTLS case mentioned above. This can also be
useful for proxy protocols like SOCKS or HTTP CONNECT . In such cases, a
Message Framer implementation can initially intercept Messages being sent and received and
subsequently indicate that no further processing is needed.

MessageFramer -> Start<connection>
MessageFramer -> Stop<connection>

MessageFramer.MakeConnectionReady(connection)

MessageFramer.MakeConnectionClosed(connection)

MessageFramer.FailConnection(connection, error)

[RFC3207]

otherFramer := NewMessageFramer()
MessageFramer.PrependFramer(connection, otherFramer)

[RFC1928] [RFC9110]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 25

MessageFramer.StartPassthrough()

6.2. Sender-Side Message Framing
Message Framers generate an event whenever a Connection sends a new Message. The
parameters to the event align with the Send action in the API ().

Upon receiving this event, a Framer implementation is responsible for performing any necessary
transformations and sending the resulting data back to the Message Framer, which, in turn, will
send it to the next protocol. To improve performance, implementations should ensure that there
is a way to pass the original data through without copying.

To provide an example, a simple protocol that adds the length of the Message data as a header
would receive the NewSentMessage event, create a data representation of the length of the
Message data, and then send a block of data that is the concatenation of the length header and
the original Message data.

Section 9.2 of [RFC9622]

 MessageFramer
 |
 V
NewSentMessage<connection, messageData, messageContext, endOfMessage>

MessageFramer.Send(connection, messageData)

6.3. Receiver-Side Message Framing
In order to parse a received flow of data into Messages, the Message Framer notifies the Framer
implementation whenever new data is available to parse.

The parameters to the events and calls for receiving data with a Framer align with the Receive
action in the API ().

Upon receiving this event, the Framer implementation can inspect the inbound data. The data is
parsed from a particular cursor representing the unprocessed data. The application requests a
specific amount of data it needs to have available in order to parse. If the data is not available,
the parse fails.

Section 9.3 of [RFC9622]

MessageFramer -> HandleReceivedData<connection>

MessageFramer.Parse(connection, minimumIncompleteLength, maximumLength)
 |
 V
 (messageData, messageContext, endOfMessage)

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 26

https://www.rfc-editor.org/rfc/rfc9622#section-9.2
https://www.rfc-editor.org/rfc/rfc9622#section-9.3

The Framer implementation can directly advance the receive cursor once it has parsed data to
effectively discard data (for example, discard a header once the content has been parsed).

To deliver a Message to the application, the Framer implementation can either directly deliver
data that it has allocated or deliver a range of data directly from the underlying transport and
simultaneously advance the receive cursor.

Note that MessageFramer.DeliverAndAdvanceReceiveCursor allows the Framer
implementation to earmark bytes as part of a Message even before they are received by the
transport. This allows the delivery of very large Messages without requiring the implementation
to directly inspect all of the bytes.

To provide an example, a simple protocol that parses the length of the Message data as a header
value would receive the HandleReceivedData event and call Parse with a minimum and
maximum set to the length of the header field. Once the parse succeeded, it would call
AdvanceReceiveCursor with the length of the header field and then call
DeliverAndAdvanceReceiveCursor with the length of the body that was parsed from the header,
marking the new Message as complete.

MessageFramer.AdvanceReceiveCursor(connection, length)
MessageFramer.DeliverAndAdvanceReceiveCursor(connection, messageContext,
 length, endOfMessage)
MessageFramer.Deliver(connection, messageContext, messageData,
 endOfMessage)

7. Implementing Connection Management
Once a Connection is established, the Transport Services API allows applications to interact with
the Connection by modifying or inspecting Connection Properties. A Connection can also
generate error events in the form of SoftError events.

The set of Connection Properties that are supported for setting and getting on a Connection are
described in . For any Properties that are generic and, thus, could apply to all protocols
being used by a Connection, the Transport Services Implementation should store the Properties
in storage common to all protocols and notify the Protocol Stack as a whole whenever the
Properties have been modified by the application. and offer guidance on
how to do this for TCP, Multipath TCP (MPTCP), SCTP, UDP, and UDP-Lite; see Section 10 for a
description of a backtracking method to find the relevant protocol primitives using these
documents. For Protocol-specific Properties, such as the User Timeout that applies to TCP, the
Transport Services Implementation only needs to update the relevant protocol instance.

Some Connection Properties might apply to multiple protocols within a Protocol Stack.
Depending on the specific Property, it might be appropriate to apply the Property across multiple
protocols simultaneously or only apply it to one protocol. In general, the Transport Services
Implementation should allow the protocol closest to the application to interpret Connection
Properties and, potentially, modify the set of Connection Properties passed down to the next

[RFC9622]

[RFC8303] [RFC8304]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 27

protocol in the stack. For example, if the application has requested to use keep-alives with the
keepAlive Property, and the Protocol Stack contains both HTTP/2 and TCP, the HTTP/2 protocol
can choose to enable its own keep-alives to satisfy the application request and disable TCP-level
keep-alives. For cases where the application needs to have fine-grained per-protocol control, the
Transport Services Implementation can expose Protocol-specific Properties.

If an error is encountered in setting a Property (for example, if the application tries to set a TCP-
specific Property on a Connection that is not using TCP), the action must fail gracefully. The
application must be informed of the error but the Connection itself must not be terminated.

When protocol instances in the Protocol Stack report generic or protocol-specific errors, the API
will deliver them to the application as SoftError events. These allow the application to be
informed of ICMP errors and other similar events.

7.1. Pooled Connection
For applications that do not need in-order delivery of Messages, the Transport Services
Implementation may distribute Messages of a single Connection across several underlying
transport connections or multiple streams of multistreaming connections between endpoints, as
long as all of these satisfy the Selection Properties. The Transport Services Implementation will
then hide this connection management and only expose a single Connection object, which we call
a Pooled Connection. This is in contrast to Connection Groups, which explicitly expose combined
treatment of Connections, giving the application control over multiplexing, for example.

Pooled Connections can be useful when the application using the Transport Services System
implements a protocol such as HTTP, which employs request/response pairs and does not require
in-order delivery of responses. This enables implementations of Transport Services Systems to
realize transparent connection coalescing and connection migration and to perform per-Message
endpoint and path selection by choosing among multiple underlying connections.

7.2. Handling Path Changes
When a path change occurs, e.g., when the IP address of an interface changes or a new interface
becomes available, the Transport Services Implementation is responsible for notifying the
protocol instance of the change. The path change may interrupt connectivity on a path for an
active Connection or provide an opportunity for a transport that supports multipath or migration
to adapt to the new paths. Note that, in the model of the Transport Services API, migration is
considered a part of multipath connectivity; it is just a limiting policy on multipath usage. If the
multipath Selection Property is set to Disabled, migration is disallowed.

For protocols that do not support multipath or migration, the protocol instances should be
informed of the path change but should not be forcibly disconnected if the previously used path
becomes unavailable. There are many common usage scenarios that can lead to a path becoming
temporarily unavailable and then recovering before the transport protocol reaches a timeout
error. These are particularly common using mobile devices. Examples include:

an Ethernet cable becoming unplugged and then plugged back in; •

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 28

a device losing a Wi-Fi signal while a user is in an elevator and reattaching when the user
leaves the elevator; and
a user losing the radio signal while riding a train through a tunnel.

If the device is able to rejoin a network with the same IP address, a stateful transport connection
can generally resume. Thus, while it is useful for a protocol instance to be aware of a temporary
loss of connectivity, the Transport Services Implementation should not aggressively close
Connections in these scenarios.

If the Protocol Stack includes a transport protocol that supports multipath connectivity, the
Transport Services Implementation should also inform the protocol instance about potentially
new paths that become permissible based on the multipath Selection Property and the
multipathPolicy Connection Property choices made by the application. A protocol can then
establish new subflows over new paths while an active path is still available or after a break has
been detected, and it should attempt to tear down subflows over paths that are no longer used.
The Connection Property multipathPolicy of the Transport Services API allows an application
to indicate when and how different paths should be used. However, detailed handling of these
policies is implementation specific. For example, if the multipath Selection Property is set to
Active, the decision about when to create a new path or to announce a new path or set of paths
to the Remote Endpoint, e.g., in the form of additional IP addresses, is implementation specific. If
the Protocol Stack includes a transport protocol that does not support multipath but does support
migrating between paths, the update to the set of available paths can trigger the connection to be
migrated.

In the case of a Pooled Connection (Section 7.1), the Transport Services Implementation may add
connections over new paths to the pool if permissible based on the multipathPolicy and
Selection Properties. If a previously used path becomes unavailable, the Transport Services
System may disconnect all connections that require this path, but it should not disconnect the
Pooled Connection object exposed to the application. The strategy to do so is implementation
specific, but it should be consistent with the behavior of multipath transports.

•

•

8. Implementing Connection Termination
For Close (which leads to a Closed event) and Abort (which leads to a ConnectionError event),
the application might find it useful to be informed when a peer closes or aborts a Connection.
Whether this is possible depends on the underlying protocol, and no guarantees can be given.
When an underlying transport connection supports multistreaming (such as SCTP), the Transport
Services System can use a stream reset procedure to cause a Finish event upon a Close action
from the peer .[NEAT-flow-mapping]

9. Cached State
Beyond a single Connection's lifetime, it is useful for an implementation to keep state and history.
This cached state can help improve future Connection establishment due to reusing results and
credentials and favoring paths and protocols that performed well in the past.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 29

Cached state may be associated with different endpoints for the same Connection, depending on
the protocol generating the cached content. For example, session tickets for TLS are associated
with specific endpoints; thus, they should be cached based on a connection's hostname Endpoint
Identifier (if applicable). However, performance characteristics of a path are more likely tied to
the IP address and subnet being used.

9.1. Protocol State Caches
Some protocols will have long-term state to be cached in association with endpoints. This state
often has some time after which it is expired, so the implementation should allow each protocol
to specify an expiration for cached content.

Examples of cached protocol state include:

The DNS protocol can cache resolved addresses (such as those retrieved from A and AAAA
queries) associated with a Time To Live (TTL) to be used for future hostname resolutions
without requiring asking the DNS resolver again.
TLS caches session state and tickets based on a hostname, which can be used for resuming
sessions with a server.
TCP can cache cookies for use in TFO.

Cached protocol state is primarily used during Connection establishment for a single Protocol
Stack, but it may be used to influence an implementation's preference between several Candidate
Protocol Stacks. For example, if two IP address Endpoint Identifiers are otherwise equally
preferred, an implementation may choose to attempt a connection to an address for which it has
a TFO cookie.

Applications can use the Transport Services API to request that a Connection Group maintain a
separate cache for protocol state. Connections in the group will not use Cached State from
Connections outside the group, and Connections outside the group will not use state cached from
Connections inside the group. This may be necessary, for example, if application-layer identifiers
rotate and clients wish to avoid linkability via trackable TLS tickets or TFO cookies.

•

•

•

9.2. Performance Caches
In addition to protocol state, protocol instances should provide data into a performance-oriented
cache to help guide future protocol and path selection. Some performance information can be
gathered generically across several protocols to allow predictive comparisons between protocols
on given paths:

Observed RTT
Connection establishment latency
Connection establishment success rate

These items can be cached on a per-address and per-subnet granularity and averaged between
different values. The information should be cached on a per-network basis since it is expected
that different network attachments will have different performance characteristics. Besides

•
•
•

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 30

protocol instances, other system entities may also provide data into performance-oriented
caches. This could for instance be signal strength information reported by radio modems like Wi-
Fi and mobile broadband or information about the battery level of the device. Furthermore, the
system may cache the observed maximum throughput on a path as an estimate of the available
bandwidth.

An implementation should use this information, when possible, to influence preference between
Candidate Paths, endpoints, and protocol options. Eligible options that historically had
significantly better performance than others should be selected first when gathering candidates
(see Section 4.2) to ensure better performance for the application.

The reasonable lifetime for cached performance values will vary depending on the nature of the
value. Certain information, like the connection establishment success rate to a Remote Endpoint
using a given Protocol Stack, can be stored for a long period of time (hours or longer) since it is
expected that the capabilities of the Remote Endpoint are not changing very quickly. On the other
hand, the RTT observed by TCP over a particular network path may vary over a relatively short
time interval. For such values, the implementation should remove them from the cache more
quickly or treat older values with less confidence/weight.

 provides guidance about sharing of TCP Control Block information between
connections on initialization.
[RFC9040]

Connectionless:

Connected:

Multiplexing connected:

10. Specific Transport Protocol Considerations
Each protocol that is supported by a Transport Services Implementation should have a well-
defined API mapping. API mappings for a protocol are important for Connections in which a
given protocol is the "top" of the Protocol Stack. For example, the mapping of the Send action for
TCP applies to Connections in which the application directly sends over TCP.

Each protocol has a notion of "Connectedness". Possible definitions of Connectedness for various
types of protocols are:

Connectionless protocols do not establish explicit state between endpoints and
do not perform a handshake during connection establishment.

Connected (also called "connection-oriented") protocols establish state between
endpoints and perform a handshake during connection establishment. The handshake may be
0-RTT to send data or resume a session, but bidirectional traffic is required to confirm
Connectedness.

Multiplexing connected protocols share properties with connected
protocols but also explicitly support opening multiple application-level flows. This means that
they can support cloning new Connection objects without a new explicit handshake.

Protocols also have a notion of "Data Unit". Possible values for Data Unit are:

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 31

Byte-stream:

Datagram:

Message:

Byte-stream protocols do not define any message boundaries of their own apart
from the end of a stream in each direction.

Datagram protocols define message boundaries at the same level of transmission,
such that only complete (not partial) messages are supported.

Message protocols support message boundaries that can be sent and received either
as complete or partial messages. Maximum message lengths can be defined, and messages can
be partially reliable.

Below, terms in capitals with a dot character (".") (e.g., "CONNECT.SCTP") refer to the primitives
with the same name in . For further implementation details, the
description of these primitives in points to and

, which refers back to the relevant specifications for each protocol. This applies to all
elements of (see): they are listed in
with an implementation hint in the same style, pointing back to .

This document presents the protocol mappings defined in . Other protocol mappings
can be provided as separate documents, following the mapping template in Appendix A.

Section 4 of [RFC8303]
[RFC8303] Section 3 of [RFC8303] Section 3 of

[RFC8304]
[RFC8923] Appendix C of [RFC9622] Appendix A of [RFC8923]

Section 4 of [RFC8303]

[RFC8923]

Connectedness:

Data Unit:

Connection Object:

Initiate:

InitiateWithSend:

Ready:

EstablishmentError:

ConnectionError:

Listen:

ConnectionReceived:

10.1. TCP

Connected

Byte-stream

TCP connections between two hosts map directly to Connection objects.

CONNECT.TCP. Calling Initiate on a TCP connection causes it to reserve a local port
and send a SYN to the Remote Endpoint.

CONNECT.TCP with parameter user message. Early safely replayable data
is sent on a TCP connection in the SYN, as TFO data.

A TCP connection is ready once the three-way handshake is complete.

Failure of CONNECT.TCP. TCP can throw various errors during
connection setup. Specifically, it is important to handle a RST being sent by the peer during
the handshake.

Once established, TCP throws errors whenever the connection is
disconnected, such as due to receiving a RST from the peer.

LISTEN.TCP. Calling Listen for TCP binds a local port and prepares it to receive
inbound SYN packets from peers.

TCP Listeners will deliver new connections once they have replied to an
inbound SYN with a SYN-ACK.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 32

https://www.rfc-editor.org/rfc/rfc8303#section-4
https://www.rfc-editor.org/rfc/rfc8303#section-3
https://www.rfc-editor.org/rfc/rfc8304#section-3
https://www.rfc-editor.org/rfc/rfc9622#appendix-C
https://www.rfc-editor.org/rfc/rfc8923#appendix-A
https://www.rfc-editor.org/rfc/rfc8303#section-4

Clone:

Send:

Receive:

Close:

Abort:

CloseGroup:

AbortGroup:

Calling Clone on a TCP connection creates a new TCP connection with equivalent
parameters. The two associated Connection objects, and Connections generated via later calls
to Clone on an Established Connection, form a Connection Group. To realize entanglement for
these Connections, with the exception of connPriority, changing a Connection Property on
one of them must affect the Connection Properties of the others too. No guarantees of
honoring the connPriority Connection Property are given; thus, it is safe for an
implementation of a Transport Services System to ignore this Property. When it is reasonable
to assume that Connections traverse the same path (e.g., when they share the same
encapsulation), support for it can also experimentally be implemented using a congestion
control coupling mechanism (for example, see or).

SEND.TCP. On its own, TCP does not preserve Message boundaries. Calling Send on a TCP
connection lays out the bytes on the TCP send stream without any other delineation. Any
Message marked as Final will cause TCP to send a FIN once the Message has been completely
written, by calling CLOSE.TCP immediately upon successful termination of SEND.TCP. Note
that transmitting a Message marked as Final should not cause the Closed event to be
delivered to the application as it will still be possible to receive data until the peer closes or
aborts the TCP connection.

With RECEIVE.TCP, TCP delivers a stream of bytes without any Message delineation.
All data delivered in the Received or ReceivedPartial event will be part of a single stream-
wide Message that is marked Final (unless a Message Framer is used). The value of the
endOfMessage Property will be delivered when the TCP connection has received a FIN
(CLOSE-EVENT.TCP) from the peer. Note that reception of a FIN should not cause the Closed
event to be delivered to the application, as it will still be possible for the application to send
data.

Calling Close on a TCP connection indicates that the TCP connection should be
gracefully closed (CLOSE.TCP) by sending a FIN to the peer. It will then still be possible to
receive data until the peer closes or aborts the TCP connection. The Closed event will be
issued upon reception of a FIN.

Calling Abort on a TCP connection indicates that the TCP connection should be
immediately closed by sending a RST to the peer (ABORT.TCP).

Calling CloseGroup on a TCP connection (CLOSE.TCP) is identical to calling Close
on its Connection object and on all Connections in the same ConnectionGroup.

Calling AbortGroup on a TCP connection (ABORT.TCP) is identical to calling Abort
on its Connection object and on all Connections in the same ConnectionGroup.

[TCP-COUPLING] [RFC3124]

Connectedness:

Data Unit:

10.2. MPTCP

Connected

Byte-stream

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 33

The Transport Services API mappings for MPTCP are identical to TCP. MPTCP adds support for
multipath Properties, such as multipath and multipathPolicy, and actions for managing paths,
such as AddRemote and RemoveRemote.

Connectedness:

Data Unit:

Connection Object:

Initiate:

InitiateWithSend:

Ready:

EstablishmentError:

ConnectionError:

Listen:

ConnectionReceived:

Clone:

Send:

Receive:

Close:

10.3. UDP

Connectionless

Datagram

UDP connections represent a pair of specific IP addresses and ports on two
hosts.

CONNECT.UDP. Calling Initiate on a UDP connection causes it to reserve a local
port but does not generate any traffic.

Early data on a UDP connection does not have any special meaning. The
data is sent whenever the connection is Ready.

A UDP connection is ready once the system has reserved a local port and has a path to
send to the Remote Endpoint.

UDP connections can only generate errors on initiation due to port
conflicts on the local system.

UDP connections can only generate Connection errors in response to Abort
actions. (Once in use, UDP connections can also generate SoftError events (ERROR.UDP)
upon receiving ICMP notifications indicating failures in the network.)

LISTEN.UDP. Calling Listen for UDP binds a local port and prepares it to receive
inbound UDP datagrams from peers.

UDP Listeners will deliver new Connections once they have received
traffic from a new Remote Endpoint.

Calling Clone on a UDP connection creates a new connection with equivalent
parameters. The two Connection objects are otherwise independent.

SEND.UDP. Calling Send on a UDP connection sends the data as the payload of a complete
UDP datagram. Marking Messages as Final does not change anything in the datagram's
contents. Upon sending a UDP datagram, some relevant fields and flags in the IP header can
be controlled: DSCP (SET_DSCP.UDP), DF in IPv4 (SET_DF.UDP), and ECN flag (SET_ECN.UDP).

RECEIVE.UDP. UDP only delivers complete Messages to Received, each of which
represents a single datagram received in a UDP packet. Upon receiving a UDP datagram, the
ECN flag from the IP header can be obtained (GET_ECN.UDP).

Calling Close on a UDP connection (ABORT.UDP) releases the local port reservation. A
Closed event is then issued.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 34

Abort:

CloseGroup:

AbortGroup:

Calling Abort on a UDP connection (ABORT.UDP) is identical to calling Close except that
a ConnectionError event rather than a Closed event is issued.

Calling CloseGroup on a UDP connection (ABORT.UDP) is identical to calling Close
on its Connection object and on all Connections in the same ConnectionGroup.

Calling AbortGroup on a UDP connection (ABORT.UDP) is identical to calling Close
on its Connection object and on all Connections in the same ConnectionGroup.

Connectedness:

Data Unit:

10.4. UDP-Lite

Connectionless

Datagram

The Transport Services API mappings for UDP-Lite are identical to UDP. In addition, UDP-Lite
supports the msgChecksumLen and recvChecksumLen Properties that allow an application to
specify the minimum number of bytes in a Message that need to be covered by a checksum.

This includes: CONNECT.UDP-Lite; LISTEN.UDP-Lite; SEND.UDP-Lite; RECEIVE.UDP-Lite;
ABORT.UDP-Lite; ERROR.UDP-Lite; SET_DSCP.UDP-Lite; SET_DF.UDP-Lite; SET_ECN.UDP-Lite;
GET_ECN.UDP-Lite.

Connectedness:

Data Unit:

Connection Object:

Initiate:

InitiateWithSend:

Ready:

EstablishmentError:

ConnectionError:

10.5. UDP Multicast Receive

Connectionless

Datagram

Established UDP Multicast Receive connections represent a pair of specific
IP addresses and ports. The direction Selection Property must be set to Unidirectional
receive, and the Local Endpoint must be configured with a group IP address and a port.

Calling Initiate on a UDP Multicast Receive connection causes an immediate
EstablishmentError. This is an unsupported operation.

Calling InitiateWithSend on a UDP Multicast Receive connection causes
an immediate EstablishmentError. This is an unsupported operation.

A UDP Multicast Receive connection is ready once the system has received traffic for the
appropriate group and port.

UDP Multicast Receive connections cause an EstablishmentError
indicating that joining a multicast group failed if Initiate is called.

The only ConnectionError generated by a UDP Multicast Receive
connection is in response to an Abort action.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 35

Listen:

ConnectionReceived:

Clone:

Send:

Receive:

Close:

Abort:

CloseGroup:

AbortGroup:

LISTEN.UDP. Calling Listen for UDP Multicast Receive binds a local port, prepares it to
receive inbound UDP datagrams from peers, and issues a multicast host join. If a Remote
Endpoint Identifier with an address is supplied, the join is Source-Specific Multicast, and the
path selection is based on the route to the Remote Endpoint. If a Remote Endpoint Identifier is
not supplied, the join is Any-Source Multicast, and the path selection is based on the outbound
route to the group supplied in the Local Endpoint.

There are cases where it is required to open multiple connections for the same address(es). For
example, one Connection might be opened for a multicast group used for a shared control bus,
and another application later opens a separate Connection to the same group to send signals to
and/or receive signals from the common bus. In such cases, the Transport Services System needs
to explicitly enable reuse of the same set of addresses (equivalent to setting SO_REUSEADDR in
the Socket API).

UDP Multicast Receive Listeners will deliver new Connections once they
have received traffic from a new Remote Endpoint.

Calling Clone on a UDP Multicast Receive connection creates a new UDP Multicast
Receive connection with equivalent parameters. The two associated Connection objects are
otherwise independent.

SEND.UDP. Calling Send on a UDP Multicast Receive connection causes an immediate
SendError. This is an unsupported operation.

RECEIVE.UDP. UDP Multicast Receive only delivers complete Messages to Received,
each of which represents a single datagram received in a UDP packet. Upon receiving a UDP
datagram, the ECN flag from the IP header can be obtained (GET_ECN.UDP).

Calling Close on a UDP Multicast Receive connection (ABORT.UDP) releases the local
port reservation and leaves the group. A Closed event is then issued.

Calling Abort on a UDP Multicast Receive connection (ABORT.UDP) is identical to calling
Close except that a ConnectionError event rather than a Closed event is issued.

Calling CloseGroup on a UDP Multicast Receive connection (ABORT.UDP) is
identical to calling Close on its Connection object and on all Connections in the same
ConnectionGroup.

Calling AbortGroup on a UDP Multicast Receive connection (ABORT.UDP) is
identical to calling Close on its Connection object and on all Connections in the same
ConnectionGroup.

Connectedness:

Data Unit:

10.6. SCTP

Connected

Message

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 36

Connection Object:

Initiate:

Connection objects can be mapped to an SCTP association or a stream in an
SCTP association. Mapping Connection objects to SCTP streams is called "stream mapping"
and has additional requirements as follows. The following explanation assumes a client-
server communication model.

Stream mapping requires an association to already be in place between the client and the
server, and it requires the server to understand that a new incoming stream should be
represented as a new Connection object by the Transport Services System. A new SCTP stream
is created by sending an SCTP message with a new stream id. Thus, to implement stream
mapping, the Transport Services API must provide a newly created Connection object to the
application upon the reception of such a message. The necessary semantics to implement a
Transport Services System's Close and Abort primitives are provided by the stream
reconfiguration (reset) procedure described in . This also allows a stream id to be
reused after resetting ("closing") the stream. To implement this functionality, SCTP stream
reconfiguration must be supported by both the client and the server side.

To avoid head-of-line blocking, stream mapping should only be implemented when both sides
support message interleaving . This allows a sender to schedule transmissions
between multiple streams without risking that transmission of a large message on one stream
will block transmissions on other streams for a long time.

To avoid conflicts between stream ids, the following procedure is recommended: the first
Connection, for which the SCTP association has been created, must always use stream id zero.
All additional Connections are assigned to unused stream ids in ascending order. To avoid a
conflict when both endpoints map new Connections simultaneously, the peer that initiated
association must use even stream ids whereas the remote side must map its Connections to
odd stream ids. Both sides maintain a status map of the assigned stream ids. Generally, new
streams should consume the lowest available (even or odd, depending on the side) stream id;
this rule is relevant when lower stream ids become available because Connection objects
associated with the streams are closed.

SCTP stream mapping as described here has been implemented in a research prototype; a
description of this implementation is given in .

If this is the only Connection object that is assigned to the SCTP association or stream
mapping is not used, CONNECT.SCTP is called. Else, unless the Selection Property
activeReadBeforeSend is preferred or required, a new stream is used: if there are enough
streams available, Initiate is a local operation that assigns a new stream id to the
Connection object. The number of streams is negotiated as a parameter of the prior
CONNECT.SCTP call, and it represents a trade-off between local resource usage and the
number of Connection objects that can be mapped without requiring a reconfiguration signal.
When running out of streams, ADD_STREAM.SCTP must be called.

[RFC6525]

[RFC6525]

[RFC8260]

[NEAT-flow-mapping]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 37

InitiateWithSend:

Ready:

EstablishmentError:

ConnectionError:

Listen:

ConnectionReceived:

Clone:

Send:

Receive:

Close:

Abort:

CloseGroup:

If this is the only Connection object that is assigned to the SCTP association
or stream mapping is not used, CONNECT.SCTP is called with the user message parameter.
Else, a new stream is used (see Initiate for how to handle running out of streams), and this
just sends the first message on a new stream.

Initiate or InitiateWithSend returns without an error, i.e., SCTP's four-way
handshake has completed. If an association with the peer already exists, stream mapping is
used, and enough streams are available, a Connection object instantly becomes Ready after
calling Initiate or InitiateWithSend.

Failure of CONNECT.SCTP.

TIMEOUT.SCTP or ABORT-EVENT.SCTP.

LISTEN.SCTP. If an association with the peer already exists and stream mapping is
used, Listen just expects to receive a new message with a new stream id (chosen in
accordance with the stream id assignment procedure described above).

LISTEN.SCTP returns without an error (a result of successful
CONNECT.SCTP from the peer) or, in the case of stream mapping, the first message has arrived
on a new stream (in this case, Receive is also invoked).

Calling Clone on an SCTP association creates a new Connection object and assigns it a
new stream id in accordance with the stream id assignment procedure described above. If
there are not enough streams available, ADD_STREAM.SCTP must be called.

SEND.SCTP. Message Properties such as msgLifetime and msgOrdered map to parameters
of this primitive.

RECEIVE.SCTP. The "partial flag" of RECEIVE.SCTP invokes a ReceivedPartial event.

If this is the only Connection object that is assigned to the SCTP association, CLOSE.SCTP
is called and the Closed event will be delivered to the application upon the ensuing CLOSE-
EVENT.SCTP. Else, the Connection object is one out of several Connection objects that are
assigned to the same SCTP association, and RESET_STREAM.SCTP must be called, which
informs the peer that the stream will no longer be used for mapping and can be used by a
future Initiate, InitiateWithSend, or Listen action. At the peer, the event RESET_STREAM-
EVENT.SCTP will be initiated, which the peer must answer by issuing RESET_STREAM.SCTP
too. The resulting local RESET_STREAM-EVENT.SCTP informs the Transport Services System
that the stream id can now be reused by the next Initiate, InitiateWithSend, or Listen
action, and invokes a Closed event toward the application.

If this is the only Connection object that is assigned to the SCTP association, ABORT.SCTP
is called. Else, the Connection object is one out of several Connection objects that are assigned
to the same SCTP association, and shutdown proceeds as described under Close.

Calling CloseGroup calls CLOSE.SCTP, which closes all Connections in the SCTP
association.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 38

AbortGroup: Calling AbortGroup calls ABORT.SCTP, which immediately closes all Connections in
the SCTP association.

In addition to the API mappings described above, when there are multiple Connection objects
assigned to the same SCTP association, SCTP can support Connection Properties such as
connPriority and connScheduler where CONFIGURE_STREAM_SCHEDULER.SCTP can be called
to adjust the priorities of streams in the SCTP association.

11. IANA Considerations
This document has no IANA actions.

12. Security Considerations
 outlines general security considerations and requirements for any system that

implements the Transport Services Architecture. provides further discussion on
security and privacy implications of the Transport Services API. This document provides
additional guidance on implementation specifics for the Transport Services API; as such, the
security considerations in both of these documents apply. The next two subsections discuss
further considerations that are specific to mechanisms specified in this document.

[RFC9621]
[RFC9622]

12.1. Considerations for Candidate Gathering
As discussed in Sections 3 and 6 of , gathering and racing with Protocol Stacks that do
not have equivalent security properties ought not be attempted. Therefore, implementations
need to avoid downgrade attacks that allow network interference to cause the implementation to
select less secure, or entirely insecure, combinations of paths and protocols.

[RFC9621]

12.2. Considerations for Candidate Racing
See Section 5.3 for security considerations around racing with 0-RTT data.

An attacker that knows a particular device is racing several options during Connection
establishment may be able to block packets for the first connection attempt, thus inducing the
device to fall back to a secondary attempt. This is a problem if the secondary attempts have
worse security properties that enable further attacks. Implementations should ensure that all
options have equivalent security properties to avoid incentivizing attacks.

Since results from the network can determine how a connection attempt tree is built, such as
when DNS returns a list of resolved endpoints, it is possible for the network to cause an
implementation to consume significant on-device resources. Implementations should limit the
maximum amount of state allowed for any given node, including the number of child nodes,
especially when the state is based on results from the network.

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 39

https://www.rfc-editor.org/rfc/rfc9621#section-3
https://www.rfc-editor.org/rfc/rfc9621#section-6

13. References

[RFC7413]

[RFC8303]

[RFC8304]

[RFC8305]

[RFC8421]

[RFC8446]

[RFC8923]

[RFC9113]

[RFC9621]

[RFC9622]

13.1. Normative References

, , , and , , ,
, December 2014, .

, , and ,
, , ,

February 2018, .

 and ,
, , ,

February 2018, .

 and ,
, , , December 2017,

.

, , and ,
, , ,

, July 2018, .

, , ,
, August 2018, .

 and , ,
, , October 2020,
.

 and , , ,
, June 2022, .

, , , , and ,
, ,

, January 2025, .

, , , , ,
, , and ,

, , ,
January 2025, .

Cheng, Y. Chu, J. Radhakrishnan, S. A. Jain "TCP Fast Open" RFC 7413 DOI
10.17487/RFC7413 <https://www.rfc-editor.org/info/rfc7413>

Welzl, M. Tuexen, M. N. Khademi "On the Usage of Transport Features
Provided by IETF Transport Protocols" RFC 8303 DOI 10.17487/RFC8303

<https://www.rfc-editor.org/info/rfc8303>

Fairhurst, G. T. Jones "Transport Features of the User Datagram Protocol
(UDP) and Lightweight UDP (UDP-Lite)" RFC 8304 DOI 10.17487/RFC8304

<https://www.rfc-editor.org/info/rfc8304>

Schinazi, D. T. Pauly "Happy Eyeballs Version 2: Better Connectivity Using
Concurrency" RFC 8305 DOI 10.17487/RFC8305 <https://
www.rfc-editor.org/info/rfc8305>

Martinsen, P. Reddy, T. P. Patil "Guidelines for Multihomed and IPv4/IPv6
Dual-Stack Interactive Connectivity Establishment (ICE)" BCP 217 RFC 8421 DOI
10.17487/RFC8421 <https://www.rfc-editor.org/info/rfc8421>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Welzl, M. S. Gjessing "A Minimal Set of Transport Services for End Systems"
RFC 8923 DOI 10.17487/RFC8923 <https://www.rfc-editor.org/info/
rfc8923>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/
RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Pauly, T., Ed. Trammell, B., Ed. Brunstrom, A. Fairhurst, G. C. S. Perkins
"Architecture and Requirements for Transport Services" RFC 9621 DOI
10.17487/RFC9621 <https://www.rfc-editor.org/info/rfc9621>

Trammell, B., Ed. Welzl, M., Ed. Enghardt, R. Fairhurst, G. Kühlewind, M.
Perkins, C. S. Tiesel, P. S. T. Pauly "An Abstract Application Programming
Interface (API) for Transport Services" RFC 9622 DOI 10.17487/RFC9622

<https://www.rfc-editor.org/info/rfc9622>

[NEAT-flow-mapping]

13.2. Informative References

 and , ,
,

, June 2017,
.

Weinrank, F. M. Tuxen "Transparent flow mapping for NEAT" 2017
IFIP Networking Conference (IFIP Networking) and Workshops DOI 10.23919/
IFIPNetworking.2017.8264876 <https://ieeexplore.ieee.org/document/
8264876>

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 40

https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc8303
https://www.rfc-editor.org/info/rfc8304
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8421
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9621
https://www.rfc-editor.org/info/rfc9622
https://ieeexplore.ieee.org/document/8264876
https://ieeexplore.ieee.org/document/8264876

[RFC1928]

[RFC2782]

[RFC3124]

[RFC3207]

[RFC6525]

[RFC6762]

[RFC6763]

[RFC7657]

[RFC8085]

[RFC8260]

[RFC8445]

[RFC8489]

, , , , , and ,
, , , March 1996,

.

, , and ,
, , , February 2000,

.

 and , , ,
, June 2001, .

,
, , , February 2002,

.

, , and ,
, , , February 2012,

.

 and , , , ,
February 2013, .

 and , , ,
, February 2013, .

 and ,
, , , November 2015,

.

, , and , , ,
, , March 2017,

.

, , , and ,
,

, , November 2017,
.

, , and ,

, , , July 2018,
.

, , , , , and
, , ,

, February 2020, .

Leech, M. Ganis, M. Lee, Y. Kuris, R. Koblas, D. L. Jones "SOCKS Protocol
Version 5" RFC 1928 DOI 10.17487/RFC1928 <https://www.rfc-
editor.org/info/rfc1928>

Gulbrandsen, A. Vixie, P. L. Esibov "A DNS RR for specifying the location of
services (DNS SRV)" RFC 2782 DOI 10.17487/RFC2782 <https://
www.rfc-editor.org/info/rfc2782>

Balakrishnan, H. S. Seshan "The Congestion Manager" RFC 3124 DOI
10.17487/RFC3124 <https://www.rfc-editor.org/info/rfc3124>

Hoffman, P. "SMTP Service Extension for Secure SMTP over Transport Layer
Security" RFC 3207 DOI 10.17487/RFC3207 <https://www.rfc-
editor.org/info/rfc3207>

Stewart, R. Tuexen, M. P. Lei "Stream Control Transmission Protocol (SCTP)
Stream Reconfiguration" RFC 6525 DOI 10.17487/RFC6525
<https://www.rfc-editor.org/info/rfc6525>

Cheshire, S. M. Krochmal "Multicast DNS" RFC 6762 DOI 10.17487/RFC6762
<https://www.rfc-editor.org/info/rfc6762>

Cheshire, S. M. Krochmal "DNS-Based Service Discovery" RFC 6763 DOI
10.17487/RFC6763 <https://www.rfc-editor.org/info/rfc6763>

Black, D., Ed. P. Jones "Differentiated Services (Diffserv) and Real-Time
Communication" RFC 7657 DOI 10.17487/RFC7657 <https://
www.rfc-editor.org/info/rfc7657>

Eggert, L. Fairhurst, G. G. Shepherd "UDP Usage Guidelines" BCP 145 RFC
8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/
rfc8085>

Stewart, R. Tuexen, M. Loreto, S. R. Seggelmann "Stream Schedulers and
User Message Interleaving for the Stream Control Transmission Protocol" RFC
8260 DOI 10.17487/RFC8260 <https://www.rfc-editor.org/info/
rfc8260>

Keranen, A. Holmberg, C. J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Petit-Huguenin, M. Salgueiro, G. Rosenberg, J. Wing, D. Mahy, R. P.
Matthews "Session Traversal Utilities for NAT (STUN)" RFC 8489 DOI 10.17487/
RFC8489 <https://www.rfc-editor.org/info/rfc8489>

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 41

https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc3124
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc6525
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8489

[RFC8656]

[RFC9000]

[RFC9040]

[RFC9110]

[RFC9460]

[TCP-COUPLING]

, , , and ,

, , , February 2020,
.

 and ,
, , , May 2021,

.

, , and , ,
, , July 2021,

.

, , and , ,
, , , June 2022,

.

, , and ,
, ,

, November 2023, .

, , , , , and ,

,
,

, 2018, .

Reddy, T., Ed. Johnston, A., Ed. Matthews, P. J. Rosenberg "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for
NAT (STUN)" RFC 8656 DOI 10.17487/RFC8656 <https://www.rfc-
editor.org/info/rfc8656>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Touch, J. Welzl, M. S. Islam "TCP Control Block Interdependence" RFC
9040 DOI 10.17487/RFC9040 <https://www.rfc-editor.org/info/
rfc9040>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Schwartz, B. Bishop, M. E. Nygren "Service Binding and Parameter
Specification via the DNS (SVCB and HTTPS Resource Records)" RFC 9460 DOI
10.17487/RFC9460 <https://www.rfc-editor.org/info/rfc9460>

Islam, S. Welzl, M. Hiorth, K. Hayes, D. Armitage, G. S. Gjessing
"ctrlTCP: Reducing latency through coupled, heterogeneous multi-flow TCP
congestion control" IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS) DOI 10.1109/INFCOMW.
2018.8406887 <https://ieeexplore.ieee.org/document/8406887>

Appendix A. API Mapping Template
Any protocol mapping for the Transport Services API should follow a common template.

Connectedness: (Connectionless/Connected/Multiplexing Connected)

Data Unit: (Byte-stream/Datagram/Message)

Connection Object:

Initiate:

InitiateWithSend:

Ready:

EstablishmentError:

ConnectionError:

Listen:

ConnectionReceived:

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 42

https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9040
https://www.rfc-editor.org/info/rfc9040
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9460
https://ieeexplore.ieee.org/document/8406887

Clone:

Send:

Receive:

Close:

Abort:

CloseGroup:

AbortGroup:

InvalidConfiguration:

NoCandidates:

ResolutionFailed:

EstablishmentFailed:

PolicyProhibited:

NotCloneable:

MessageTooLarge:

ProtocolFailed:

InvalidMessageProperties:

DeframingFailed:

ConnectionAborted:

Timeout:

Appendix B. Reasons for Errors
The Transport Services API allows for several generic error types to specify a more
detailed reason about why an error occurred. This appendix lists some of the possible reasons.

The Properties and Endpoint Identifiers provided by the application are
either contradictory or incomplete. Examples include the lack of a Remote Endpoint Identifier
on an active open or using a multicast group address while not requesting a Unidirectional
receive.

The configuration is valid, but none of the available transport protocols can
satisfy the Properties provided by the application.

The remote or local specifier provided by the application cannot be resolved.

The Transport Services System was unable to establish a transport-layer
connection to the Remote Endpoint specified by the application.

The System Policy prevents the Transport Services System from performing
the action requested by the application.

The Protocol Stack is not capable of being cloned.

The Message is too big for the Transport Services System to handle.

The underlying Protocol Stack failed.

The Message Properties either contradict the Transport Properties
or cannot be satisfied by the Transport Services System.

The data that was received by the underlying Protocol Stack could not be
processed by the Message Framer.

The connection was aborted by the peer.

Delivery of a Message was not possible after a timeout.

[RFC9622]

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 43

Appendix C. Existing Implementations
This appendix gives an overview of existing implementations, at the time of writing, of Transport
Services Systems that are (to some degree) in line with this document.

Apple's Network.framework:

Network.framework is a transport-level API built for C, Objective-C, and Swift. It is a
connect-by-name API that supports transport security protocols. It provides user-space
implementations of TCP, UDP, TLS, DTLS, and proxy protocols, and it allows extension via
custom Framers.
Documentation:

NEAT and NEATPy:

NEAT is the output of the European H2020 research project "NEAT"; it is a user-space
library for protocol-independent communication on top of TCP, UDP, and SCTP, with many
more features, such as a policy manager.
Code:
Code at the Software Heritage Archive:

NEATPy is a Python shim over NEAT that updates the NEAT API to be in line with version 6
of the Transport Services API .
Code:
Code at the Software Heritage Archive:

PyTAPS:

A Transport Services (TAPS) implementation based on Python asyncio, offering protocol-
independent communication to applications on top of TCP, UDP, and TLS, with support for
multicast.
Code:
Code at the Software Heritage Archive:

•

◦

◦ https://developer.apple.com/documentation/network

•

◦

◦ https://github.com/NEAT-project/neat
◦ https://archive.softwareheritage.org/swh:1:dir:

737820840f83c4ec9493a8c0cc89b3159e2e1a57;origin=https://github.com/NEAT-project/
neat;visit=swh:1:snp:bbb611b04e355439d47e426e8ad5d07cdbf647e0;anchor=swh:1:rev:
652ee991043ce3560a6e5715fa2a5c211139d15c

◦
[RFC9622]

◦ https://github.com/theagilepadawan/NEATPy
◦ https://archive.softwareheritage.org/swh:1:dir:

295ccd148cf918ccb9ed7ad14b5ae968a8d2c370;origin=https://github.com/theagilepadawan/
NEATPy;visit=swh:1:snp:6e1a3a9dd4c532ba6c0f52c8f734c1256a06cedc;anchor=swh:
1:rev:cd0788d7f7f34a0e9b8654516da7c002c44d2e95

•

◦

◦ https://github.com/fg-inet/python-asyncio-taps
◦ https://archive.softwareheritage.org/swh:

1:dir:a7151096d91352b439b092ef116d04f38e52e556;origin=https://github.com/fg-inet/
python-asyncio-taps;visit=swh:1:snp:
4841e59b53b28bb385726e7d3a569bee0fea7fc4;anchor=swh:1:rev:
63571fd7545da25142bc1a6371b8f13097cba38e

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 44

https://developer.apple.com/documentation/network
https://github.com/NEAT-project/neat
https://archive.softwareheritage.org/swh:1:dir:737820840f83c4ec9493a8c0cc89b3159e2e1a57;origin=https://github.com/NEAT-project/neat;visit=swh:1:snp:bbb611b04e355439d47e426e8ad5d07cdbf647e0;anchor=swh:1:rev:652ee991043ce3560a6e5715fa2a5c211139d15c
https://archive.softwareheritage.org/swh:1:dir:737820840f83c4ec9493a8c0cc89b3159e2e1a57;origin=https://github.com/NEAT-project/neat;visit=swh:1:snp:bbb611b04e355439d47e426e8ad5d07cdbf647e0;anchor=swh:1:rev:652ee991043ce3560a6e5715fa2a5c211139d15c
https://archive.softwareheritage.org/swh:1:dir:737820840f83c4ec9493a8c0cc89b3159e2e1a57;origin=https://github.com/NEAT-project/neat;visit=swh:1:snp:bbb611b04e355439d47e426e8ad5d07cdbf647e0;anchor=swh:1:rev:652ee991043ce3560a6e5715fa2a5c211139d15c
https://archive.softwareheritage.org/swh:1:dir:737820840f83c4ec9493a8c0cc89b3159e2e1a57;origin=https://github.com/NEAT-project/neat;visit=swh:1:snp:bbb611b04e355439d47e426e8ad5d07cdbf647e0;anchor=swh:1:rev:652ee991043ce3560a6e5715fa2a5c211139d15c
https://github.com/theagilepadawan/NEATPy
https://archive.softwareheritage.org/swh:1:dir:295ccd148cf918ccb9ed7ad14b5ae968a8d2c370;origin=https://github.com/theagilepadawan/NEATPy;visit=swh:1:snp:6e1a3a9dd4c532ba6c0f52c8f734c1256a06cedc;anchor=swh:1:rev:cd0788d7f7f34a0e9b8654516da7c002c44d2e95
https://archive.softwareheritage.org/swh:1:dir:295ccd148cf918ccb9ed7ad14b5ae968a8d2c370;origin=https://github.com/theagilepadawan/NEATPy;visit=swh:1:snp:6e1a3a9dd4c532ba6c0f52c8f734c1256a06cedc;anchor=swh:1:rev:cd0788d7f7f34a0e9b8654516da7c002c44d2e95
https://archive.softwareheritage.org/swh:1:dir:295ccd148cf918ccb9ed7ad14b5ae968a8d2c370;origin=https://github.com/theagilepadawan/NEATPy;visit=swh:1:snp:6e1a3a9dd4c532ba6c0f52c8f734c1256a06cedc;anchor=swh:1:rev:cd0788d7f7f34a0e9b8654516da7c002c44d2e95
https://archive.softwareheritage.org/swh:1:dir:295ccd148cf918ccb9ed7ad14b5ae968a8d2c370;origin=https://github.com/theagilepadawan/NEATPy;visit=swh:1:snp:6e1a3a9dd4c532ba6c0f52c8f734c1256a06cedc;anchor=swh:1:rev:cd0788d7f7f34a0e9b8654516da7c002c44d2e95
https://github.com/fg-inet/python-asyncio-taps
https://archive.softwareheritage.org/swh:1:dir:a7151096d91352b439b092ef116d04f38e52e556;origin=https://github.com/fg-inet/python-asyncio-taps;visit=swh:1:snp:4841e59b53b28bb385726e7d3a569bee0fea7fc4;anchor=swh:1:rev:63571fd7545da25142bc1a6371b8f13097cba38e
https://archive.softwareheritage.org/swh:1:dir:a7151096d91352b439b092ef116d04f38e52e556;origin=https://github.com/fg-inet/python-asyncio-taps;visit=swh:1:snp:4841e59b53b28bb385726e7d3a569bee0fea7fc4;anchor=swh:1:rev:63571fd7545da25142bc1a6371b8f13097cba38e
https://archive.softwareheritage.org/swh:1:dir:a7151096d91352b439b092ef116d04f38e52e556;origin=https://github.com/fg-inet/python-asyncio-taps;visit=swh:1:snp:4841e59b53b28bb385726e7d3a569bee0fea7fc4;anchor=swh:1:rev:63571fd7545da25142bc1a6371b8f13097cba38e
https://archive.softwareheritage.org/swh:1:dir:a7151096d91352b439b092ef116d04f38e52e556;origin=https://github.com/fg-inet/python-asyncio-taps;visit=swh:1:snp:4841e59b53b28bb385726e7d3a569bee0fea7fc4;anchor=swh:1:rev:63571fd7545da25142bc1a6371b8f13097cba38e
https://archive.softwareheritage.org/swh:1:dir:a7151096d91352b439b092ef116d04f38e52e556;origin=https://github.com/fg-inet/python-asyncio-taps;visit=swh:1:snp:4841e59b53b28bb385726e7d3a569bee0fea7fc4;anchor=swh:1:rev:63571fd7545da25142bc1a6371b8f13097cba38e

Acknowledgements
This work has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No. 644334 (NEAT) and No. 815178 (5GENESIS).

This work has been supported by:

Leibniz Prize project funds from the DFG - German Research Foundation: Gottfried Wilhelm
Leibniz-Preis 2011 (FKZ FE 570/4-1).
the UK Engineering and Physical Sciences Research Council under grant EP/R04144X/1.
the Research Council of Norway under its "Toppforsk" programme through the "OCARINA"
project.

Thanks to , , , and for their
contributions to the design of this specification. Thanks also to , ,

, and for their implementation and design efforts, including Happy
Eyeballs, that heavily influenced this work.

•

•
•

Colin S. Perkins Tom Jones Karl-Johan Grinnemo Gorry Fairhurst
Stuart Cheshire Josh Graessley

David Schinazi Eric Kinnear

Authors' Addresses
Anna Brunstrom ()editor
Karlstad University
Universitetsgatan 2
651 88 Karlstad
Sweden

anna.brunstrom@kau.seEmail:

Tommy Pauly ()editor
Apple Inc.
One Apple Park Way

, Cupertino CA 95014
United States of America

tpauly@apple.comEmail:

Reese Enghardt
Netflix
121 Albright Way

, Los Gatos CA 95032
United States of America

ietf@tenghardt.netEmail:

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 45

mailto:anna.brunstrom@kau.se
mailto:tpauly@apple.com
mailto:ietf@tenghardt.net

Philipp S. Tiesel
SAP SE
George-Stephenson-Str. 7-13
10557 Berlin
Germany

philipp@tiesel.netEmail:

Michael Welzl
University of Oslo
PO Box 1080 Blindern
0316 Oslo
Norway

michawe@ifi.uio.noEmail:

RFC 9623 Transport Services Implementation January 2025

Brunstrom, et al. Informational Page 46

mailto:philipp@tiesel.net
mailto:michawe@ifi.uio.no

	RFC 9623
	Implementing Interfaces to Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Implementing Connection Objects
	3. Implementing Preestablishment
	3.1. Configuration-Time Errors
	3.2. Role of System Policy

	4. Implementing Connection Establishment
	4.1. Structuring Candidates as a Tree
	4.1.1. Branch Types
	4.1.1.1. Derived Endpoints
	4.1.1.2. Network Paths
	4.1.1.3. Protocol Options

	4.1.2. Branching Order-of-Operations
	4.1.3. Sorting Branches

	4.2. Candidate Gathering
	4.2.1. Gathering Endpoint Candidates
	4.2.1.1. Local Endpoint Candidates
	4.2.1.2. Remote Endpoint Candidates

	4.3. Candidate Racing
	4.3.1. Simultaneous
	4.3.2. Staggered
	4.3.3. Failover

	4.4. Completing Establishment
	4.4.1. Determining Successful Establishment

	4.5. Establishing Multiplexed Connections
	4.6. Handling Connectionless Protocols
	4.7. Implementing Listeners
	4.7.1. Implementing Listeners for Connected Protocols
	4.7.2. Implementing Listeners for Connectionless Protocols
	4.7.3. Implementing Listeners for Multiplexed Protocols

	5. Implementing Sending and Receiving Data
	5.1. Sending Messages
	5.1.1. Message Properties
	5.1.2. Send Completion
	5.1.3. Batching Sends

	5.2. Receiving Messages
	5.3. Handling of Data for Fast-Open Protocols

	6. Implementing Message Framers
	6.1. Defining Message Framers
	6.2. Sender-Side Message Framing
	6.3. Receiver-Side Message Framing

	7. Implementing Connection Management
	7.1. Pooled Connection
	7.2. Handling Path Changes

	8. Implementing Connection Termination
	9. Cached State
	9.1. Protocol State Caches
	9.2. Performance Caches

	10. Specific Transport Protocol Considerations
	10.1. TCP
	10.2. MPTCP
	10.3. UDP
	10.4. UDP-Lite
	10.5. UDP Multicast Receive
	10.6. SCTP

	11. IANA Considerations
	12. Security Considerations
	12.1. Considerations for Candidate Gathering
	12.2. Considerations for Candidate Racing

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. API Mapping Template
	Appendix B. Reasons for Errors
	Appendix C. Existing Implementations
	Acknowledgements
	Authors' Addresses

