Design Notes on the Sigma 7

Variations on Status

Over time, the t_stat data type has been overloaded to mean SCP status returns, magtape library status returns, and then simulator-specific status returns. The result is a lot of confusion about overlapping ranges, translation, and so on.

There’s nothing that can be done about the overlap between SCP and magtape status; any call on a magtape library routine must be followed by a ‘status translation’ to get a valid SCP (or other) status code.

The Sigma 7 simulator uses uint32 for its generalized status variables. These status variables may contain values in the following ranges:

0x0000 – 0x1000

SCP or VM status codes

0x4000 – 0x7FFF

channel error status codes

0x8000 – 0xFFFF

channel information status codes

0x10000+

trap codes

In practice, channel codes cannot be passed back to higher-level routines. Thus, as with magtape codes, a status translation is required before a return is made, and status codes confined to either SimH status codes or trap codes.

The I/O Interface

The Sigma 7 has up to 8 channels (A … H). Each channel has its own device address space, with up to 32 device controllers. I/O devices are reached through a dispatch routine, with this calling sequence:

uint32 st = io_dispatch (uint32 op, uint32 dva, uint32 *dvst)

where:

· st is an SCP or VM status code, or a trap code

· op is the opcode of the current instruction (bits <1:7>)

· dva is the device address from the current instruction

· dvst is the device status returned by the instruction

dvst is broken up into the following fields:

bits

meaning

<7:0>

device status byte for TIO, TDV, or AIO

(SIO and HIO use TIO status)

<19:16>
condition codes

<31:24>
unit number (AIO only)

Channels

In the Sigma simulator, devices drive the channel, rather than the reverse. Most devices implement a state-driven model, roughly like this.

1. Init state. Following a successful SIO, the device enters INIT state. It calls the channel to get the next channel command. This will cause the channel to mark itself active and to set up certain internal state flags. The device uses the returned channel command to schedule one or more execution states.

2. Exec state. In execution state, the device executes the channel command. Depending on the command, it may call on the channel to provide a byte or word for output, or to absorb a byte or word of input. The device reschedules itself in exec state until:

· It receives a “zero byte count” status from the channel

· It reaches end of record (on input)

· It encounters a device error.

If a normal end is reached, the device will transition to END state. If an abnormal end is encountered, the device will call tell the channel to terminate with an unusual end condition and cease operations.

3. End state. In END state, the device tells the channel to terminate with a normal end. The channel may indicate that there is a chained command. In that case, the device returns to INIT state, just as though a new SIO had been issued.

Unimplemented Register Blocks

On the later models, selecting an unimplemented register block causes a trap, but on the Sigma 5/6/7, the machine continues to run. All registers read as zero (or 0xFFFFFFFF), and writes are ignored.

The simulator uses a unified array for the register block. To avoid testing for invalid register blocks on every register read or write, a “cleaner” thread is scheduled if an invalid register block is selected. This thread runs every instruction if the selected register block is unimplemented, and it zeroes the currently selected register block. This means that the register state may not be correct at simulator stops but is always correct as seen by the simulated program.

