
Barman Manual

October 3, 2023 (3.9.0)

EnterpriseDB UK Limited

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Contents
Introduction 7

Before you start 9

Design and architecture 10
Where to install Barman . 10
One Barman, many PostgreSQL servers . 11
Streaming backup vs rsync/SSH . 12
The Barman WAL archive . 12
Two typical scenarios for backups . 13

Scenario 1: Backup via streaming protocol . 13
Scenario 2: Backup via rsync/SSH . 15

System requirements 17
Requirements for backup . 17
Requirements for recovery . 17

Installation 19
Installation on Red Hat Enterprise Linux (RHEL) and RHEL-based systems using RPM packages 19
Installation on Debian/Ubuntu using packages . 20
Installation on SLES using packages . 20
Installation from sources . 21
PostgreSQL client/server binaries . 21

Third party PostgreSQL variants . 22

Upgrading Barman 22
Upgrading to Barman 3.0.0 . 22

Default backup approach for Rsync backups is now concurrent 22
Metadata changes . 23

Upgrading from Barman 2.10 . 23
Upgrading from Barman 2.X (prior to 2.8) . 23
Upgrading from Barman 1.X . 23

Configuration 24
Options scope . 24
Examples of configuration . 25

Setup of a new server in Barman 27
Preliminary steps . 27

PostgreSQL connection . 27
PostgreSQL WAL archiving and replication . 29
PostgreSQL streaming connection . 29
SSH connections . 30

Copyright © 2010-2023, EnterpriseDB UK Limited 2

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

The server configuration file . 32
WAL streaming . 32

Replication slots . 33
How to configure the WAL streaming . 33
Limitations of partial WAL files with recovery . 34

WAL archiving via archive_command . 34
WAL archiving via barman-wal-archive . 35
WAL archiving via rsync/SSH . 36

Verification of WAL archiving configuration . 36
Streaming backup . 37
Backup with rsync/SSH . 37
Backup with cloud snapshots . 38

Prerequisites for cloud snapshots . 38
Configuration for snapshot backups . 40
Taking a snapshot backup . 42

How to setup a Windows based server . 42

General commands 44
cron . 44
diagnose . 45
list-servers . 45

Server commands 46
archive-wal . 46
backup . 46
check . 47
generate-manifest . 47
get-wal . 47
list-backups . 49
rebuild-xlogdb . 49
receive-wal . 49

receive-wal process management . 50
Replication slot management . 50

replication-status . 50
show-servers . 51
status . 51
switch-wal . 51
verify-backup . 51

Backup commands 52
Backup ID shortcuts . 52
check-backup . 52
delete . 53
keep . 53
list-files . 54

Copyright © 2010-2023, EnterpriseDB UK Limited 3

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

recover . 54
Remote recovery . 55
Tablespace remapping . 55
Point in time recovery . 56
Fetching WALs from the Barman server . 57
Recovering compressed backups . 57

show-backup . 57

Features in detail 58
Backup features . 58

Incremental backup . 58
Limiting bandwidth usage . 59
Network Compression . 59
Backup Compression . 60
Concurrent backup . 62
Concurrent backup of a standby . 63
Immediate checkpoint . 64
Local backup . 64

Archiving features . 65
WAL compression . 65
Synchronous WAL streaming . 65

Catalog management features . 66
Minimum redundancy safety . 66
Retention policies . 67

Hook scripts . 69
Backup scripts . 70
Backup delete scripts . 70
WAL archive scripts . 71
WAL delete scripts . 72
Recovery scripts . 72

Customization . 73
Lock file directory . 73
Binary paths . 73

Integration with cluster management systems . 73
Parallel jobs . 74

Parallel jobs and sshd MaxStartups . 74
Geographical redundancy . 75

Sync information . 75
Configuration . 76
Node synchronisation . 76
Manual synchronisation . 76

Cloud snapshot backups . 77
Snapshot backup details . 77
Recovering from a snapshot backup . 77

Copyright © 2010-2023, EnterpriseDB UK Limited 4

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Backup metadata for snapshot backups . 79

Barman client utilities (barman-cli) 83
Installation . 83

Barman client utilities for the Cloud (barman-cli-cloud) 83
Installation . 84
barman-cloud hook scripts . 85
Selecting a cloud provider . 85
Specificity by provider . 86

Google Cloud Storage . 86
barman-cloud and snapshot backups . 86

barman-cloud-backup for snapshots . 87
barman-cloud-restore for snapshots . 87

Troubleshooting 89
Diagnose a Barman installation . 89
Requesting help . 89

Submitting a bug . 89

The Barman project 90
Support and sponsor opportunities . 90
Contributing to Barman . 90
Authors . 91
Links . 91
License and Contributions . 91

Copyright © 2010-2023, EnterpriseDB UK Limited 5

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Barman (Backup and Recovery Manager) is an open-source administration tool for disaster recovery of
PostgreSQL servers written in Python. It allows your organisation to perform remote backups of multiple
servers in business critical environments to reduce risk and help DBAs during the recovery phase.

Barman is distributed under GNU GPL 3 and maintained by EnterpriseDB, a platinum sponsor of the
PostgreSQL project.

IMPORTANT:
This manual assumes that you are familiar with theoretical disaster recovery concepts, and
that you have a grasp of PostgreSQL fundamentals in terms of physical backup and disaster
recovery. See section "Before you start" below for details.

Copyright © 2010-2023, EnterpriseDB UK Limited 6

https://www.pgbarman.org/
https://www.enterprisedb.com/
https://www.postgresql.org/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Introduction

In a perfect world, there would be no need for a backup. However, it is important, especially in
business environments, to be prepared for when the "unexpected" happens. In a database scenario, the
unexpected could take any of the following forms:

• data corruption
• system failure (including hardware failure)
• human error
• natural disaster

In such cases, any ICT manager or DBA should be able to fix the incident and recover the database in
the shortest time possible. We normally refer to this discipline as disaster recovery, and more broadly
business continuity.

Within business continuity, it is important to familiarise with two fundamental metrics, as defined by
Wikipedia:

• Recovery Point Objective (RPO): "maximum targeted period in which data might be lost from an
IT service due to a major incident"

• Recovery Time Objective (RTO): "the targeted duration of time and a service level within which a
business process must be restored after a disaster (or disruption) in order to avoid unacceptable
consequences associated with a break in business continuity"

In a few words, RPO represents the maximum amount of data you can afford to lose, while RTO
represents the maximum down-time you can afford for your service.

Understandably, we all want RPO=0 ("zero data loss") and RTO=0 (zero down-time, utopia) - even if it is
our grandmothers’s recipe website. In reality, a careful cost analysis phase allows you to determine your
business continuity requirements.

Fortunately, with an open source stack composed of Barman and PostgreSQL, you can achieve RPO=0
thanks to synchronous streaming replication. RTO is more the focus of a High Availability solution, like
repmgr. Therefore, by integrating Barman and repmgr, you can dramatically reduce RTO to nearly zero.

Based on our experience at EnterpriseDB, we can confirm that PostgreSQL open source clusters with
Barman and repmgr can easily achieve more than 99.99% uptime over a year, if properly configured and
monitored.

In any case, it is important for us to emphasise more on cultural aspects related to disaster recovery,
rather than the actual tools. Tools without human beings are useless.

Our mission with Barman is to promote a culture of disaster recovery that:

• focuses on backup procedures

Copyright © 2010-2023, EnterpriseDB UK Limited 7

https://en.wikipedia.org/wiki/Recovery_point_objective
https://en.wikipedia.org/wiki/Recovery_time_objective
https://www.repmgr.org/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• focuses even more on recovery procedures
• relies on education and training on strong theoretical and practical concepts of PostgreSQL’s crash

recovery, backup, Point-In-Time-Recovery, and replication for your team members
• promotes testing your backups (only a backup that is tested can be considered to be valid), either

manually or automatically (be creative with Barman’s hook scripts!)
• fosters regular practice of recovery procedures, by all members of your devops team (yes, devel-

opers too, not just system administrators and DBAs)
• solicits to regularly scheduled drills and disaster recovery simulations with the team every 3-6

months
• relies on continuous monitoring of PostgreSQL and Barman, and that is able to promptly identify

any anomalies

Moreover, do everything you can to prepare yourself and your team for when the disaster happens (yes,
when), because when it happens:

• It is going to be a Friday evening, most likely right when you are about to leave the office.
• It is going to be when you are on holiday (right in the middle of your cruise around the world) and

somebody else has to deal with it.
• It is certainly going to be stressful.
• You will regret not being sure that the last available backup is valid.
• Unless you know how long it approximately takes to recover, every second will seems like forever.

Be prepared, don’t be scared.

In 2011, with these goals in mind, 2ndQuadrant started the development of Barman, now one of the
most used backup tools for PostgreSQL. Barman is an acronym for "Backup and Recovery Manager".

Currently, Barman works only on Linux and Unix operating systems.

Copyright © 2010-2023, EnterpriseDB UK Limited 8

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Before you start

Before you start using Barman, it is fundamental that you get familiar with PostgreSQL and the concepts
around physical backups, Point-In-Time-Recovery and replication, such as base backups, WAL archiving,
etc.

Below you can find a non exhaustive list of resources that we recommend for you to read:

• PostgreSQL documentation:

– SQL Dump1

– File System Level Backup
– Continuous Archiving and Point-in-Time Recovery (PITR)
– Reliability and the Write-Ahead Log

• Book : PostgreSQL 10 Administration Cookbook

Professional training on these topics is another effective way of learning these concepts. At any time of
the year you can find many courses available all over the world, delivered by PostgreSQL companies
such as EnterpriseDB.

1It is important that you know the difference between logical and physical backup, therefore between pg_dump and a tool
like Barman.

Copyright © 2010-2023, EnterpriseDB UK Limited 9

https://www.postgresql.org/docs/current/static/backup-dump.html
https://www.postgresql.org/docs/current/static/backup-file.html
https://www.postgresql.org/docs/current/static/continuous-archiving.html
https://www.postgresql.org/docs/current/static/wal.html
https://www.2ndquadrant.com/en/books/postgresql-10-administration-cookbook/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Design and architecture

Where to install Barman

One of the foundations of Barman is the ability to operate remotely from the database server, via the
network.

Theoretically, you could have your Barman server located in a data centre in another part of the world,
thousands of miles away from your PostgreSQL server. Realistically, you do not want your Barman
server to be too far from your PostgreSQL server, so that both backup and recovery times are kept under
control.

Even though there is no "one size fits all" way to setup Barman, there are a couple of recommendations
that we suggest you abide by, in particular:

• Install Barman on a dedicated server
• Do not share the same storage with your PostgreSQL server
• Integrate Barman with your monitoring infrastructure 2

• Test everything before you deploy it to production

A reasonable way to start modelling your disaster recovery architecture is to:

• design a couple of possible architectures in respect to PostgreSQL and Barman, such as:

1. same data centre
2. different data centre in the same metropolitan area
3. different data centre

• elaborate the pros and the cons of each hypothesis
• evaluate the single points of failure (SPOF) of your system, with cost-benefit analysis
• make your decision and implement the initial solution

Having said this, a very common setup for Barman is to be installed in the same data centre where
your PostgreSQL servers are. In this case, the single point of failure is the data centre. Fortunately, the
impact of such a SPOF can be alleviated thanks to two features that Barman provides to increase the
number of backup tiers:

1. geographical redundancy (introduced in Barman 2.6)
2. hook scripts

2Integration with Nagios/Icinga is straightforward thanks to the barman check --nagios command, one of the most
important features of Barman and a true lifesaver.

Copyright © 2010-2023, EnterpriseDB UK Limited 10

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Figure 1: An example of architecture with geo-redundancy

With geographical redundancy, you can rely on a Barman instance that is located in a different data
centre/availability zone to synchronise the entire content of the source Barman server. There’s more:
given that geo-redundancy can be configured in Barman not only at global level, but also at server level,
you can create hybrid installations of Barman where some servers are directly connected to the local
PostgreSQL servers, and others are backing up subsets of different Barman installations (cross-site
backup). Figure 1 below shows two availability zones (one in Europe and one in the US), each with
a primary PostgreSQL server that is backed up in a local Barman installation, and relayed on the
other Barman server (defined as passive) for multi-tier backup via rsync/SSH. Further information on
geo-redundancy is available in the specific section.

Thanks to hook scripts instead, backups of Barman can be exported on different media, such as tape
via tar, or locations, like an S3 bucket in the Amazon cloud.

Remember that no decision is forever. You can start this way and adapt over time to the solution that
suits you best. However, try and keep it simple to start with.

One Barman, many PostgreSQL servers

Another relevant feature that was first introduced by Barman is support for multiple servers. Barman
can store backup data coming from multiple PostgreSQL instances, even with different versions, in a
centralised way. 3

3The same requirements for PostgreSQL’s PITR apply for recovery, as detailed in the section "Requirements for recovery".

Copyright © 2010-2023, EnterpriseDB UK Limited 11

https://www.postgresql.org/docs/current/static/warm-standby.html#STANDBY-PLANNING

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

As a result, you can model complex disaster recovery architectures, forming a "star schema", where
PostgreSQL servers rotate around a central Barman server.

Every architecture makes sense in its own way. Choose the one that resonates with you, and most
importantly, the one you trust, based on real experimentation and testing.

From this point forward, for the sake of simplicity, this guide will assume a basic architecture:

• one PostgreSQL instance (with host name pg)
• one backup server with Barman (with host name backup)

Streaming backup vs rsync/SSH

Barman is able to take backups using either Rsync, which uses SSH as a transport mechanism, or
pg_basebackup, which uses PostgreSQL’s streaming replication protocol.

Choosing one of these two methods is a decision you will need to make, however for general usage we
recommend using streaming replication for all currently supported versions of PostgreSQL.

IMPORTANT:
Because Barman transparently makes use of pg_basebackup, features such as incremental
backup, parallel backup, and deduplication are currently not available. In this case, bandwidth
limitation has some restrictions - compared to the traditional method via rsync.

Backup using rsync/SSH is recommended in all cases where pg_basebackup limitations occur (for
example, a very large database that can benefit from incremental backup and deduplication).

The reason why we recommend streaming backup is that, based on our experience, it is easier to setup
than the traditional one. Also, streaming backup allows you to backup a PostgreSQL server on Windows4,
and makes life easier when working with Docker.

The Barman WAL archive

Recovering a PostgreSQL backup relies on replaying transaction logs (also known as xlog or WAL files).
It is therefore essential that WAL files are stored by Barman alongside the base backups so that they are
available at recovery time. This can be achieved using either WAL streaming or standard WAL archiving
to copy WALs into Barman’s WAL archive.

WAL streaming involves streaming WAL files from the PostgreSQL server with pg_receivewal using
replication slots. WAL streaming is able to reduce the risk of data loss, bringing RPO down to near zero
values. It is also possible to add Barman as a synchronous WAL receiver in your PostgreSQL cluster
and achieve zero data loss (RPO=0).

4Backup of a PostgreSQL server on Windows is possible, but it is still experimental because it is not yet part of our
continuous integration system. See section "How to setup a Windows based server" for details.

Copyright © 2010-2023, EnterpriseDB UK Limited 12

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Barman also supports standard WAL file archiving which is achieved using PostgreSQL’s
archive_command (either via rsync/SSH, or via barman-wal-archive from the barman-cli
package). With this method, WAL files are archived only when PostgreSQL switches to a new WAL file.
To keep it simple this normally happens every 16MB worth of data changes.

It is required that one of WAL streaming or WAL archiving is configured. It is optionally possible to
configure both WAL streaming and standard WAL archiving - in such cases Barman will automatically
de-duplicate incoming WALs. This provides a fallback mechanism so that WALs are still copied to
Barman’s archive in the event that WAL streaming fails.

For general usage we recommend configuring WAL streaming only.

NOTE: Previous versions of Barman recommended that both WAL archiving and WAL
streaming were used. This was because PostreSQL versions older than 9.4 did not support
replication slots and therefore WAL streaming alone could not guarantee all WALs would be
safely stored in Barman’s WAL archive. Since all supported versions of PostgreSQL now
have replication slots it is sufficient to configure only WAL streaming.

Two typical scenarios for backups

In order to make life easier for you, below we summarise the two most typical scenarios for a given
PostgreSQL server in Barman.

Bear in mind that this is a decision that you must make for every single server that you decide to back up
with Barman. This means that you can have heterogeneous setups within the same installation.

As mentioned before, we will only worry about the PostgreSQL server (pg) and the Barman server
(backup). However, in real life, your architecture will most likely contain other technologies such as
repmgr, pgBouncer, Nagios/Icinga, and so on.

Scenario 1: Backup via streaming protocol

A streaming backup installation is recommended for most use cases - see figure 2 below.

In this scenario, you will need to configure:

1. a standard connection to PostgreSQL, for management, coordination, and monitoring purposes
2. a streaming replication connection that will be used by both pg_basebackup (for base backup

operations) and pg_receivewal (for WAL streaming)

In Barman’s terminology this setup is known as streaming-only setup as it does not use an SSH
connection for backup and archiving operations. This is particularly suitable and extremely practical for
Docker environments.

As discussed in "The Barman WAL archive", you can configure WAL archiving via SSH in addition to
WAL streaming - see figure 3 below.

WAL archiving via SSH requires:

Copyright © 2010-2023, EnterpriseDB UK Limited 13

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Figure 2: Streaming-only backup (Scenario 1)

Figure 3: Streaming backup with WAL archiving (Scenario 1b)

Copyright © 2010-2023, EnterpriseDB UK Limited 14

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Figure 4: Scenario 2 - Backup via rsync/SSH

• an additional SSH connection that allows the postgres user on the PostgreSQL server to connect
as barman user on the Barman server

• the archive_command in PostgreSQL be configured to ship WAL files to Barman

Scenario 2: Backup via rsync/SSH

An rsync/SSH backup installation is required for cases where the following features are required:

• file-level incremental backup
• parallel backup
• finer control of bandwidth usage, including on a per-tablespace basis

In this scenario, you will need to configure:

1. a standard connection to PostgreSQL for management, coordination, and monitoring purposes
2. an SSH connection for base backup operations to be used by rsync that allows the barman user

on the Barman server to connect as postgres user on the PostgreSQL server
3. an SSH connection for WAL archiving to be used by the archive_command in PostgreSQL and that

allows the postgres user on the PostgreSQL server to connect as barman user on the Barman
server

Copyright © 2010-2023, EnterpriseDB UK Limited 15

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Figure 5: Backup via rsync/SSH with WAL streaming (Scenario 2b)

As an alternative to configuring WAL archiving in step 3, you can instead configure WAL streaming as
described in Scenario 1. This will use a streaming replication connection instead of archive_command
and significantly reduce RPO. As with Scenario 1 it is also possible to configure both WAL streaming
and WAL archiving as shown in figure 5 below.

Copyright © 2010-2023, EnterpriseDB UK Limited 16

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

System requirements

• Linux/Unix
• Python >= 3.6
• Python modules:

– argcomplete
– psycopg2 >= 2.4.2
– python-dateutil
– setuptools

• PostgreSQL >= 10 (next version will require PostgreSQL >= 11)
• rsync >= 3.0.4 (optional)

IMPORTANT: Users of RedHat Enterprise Linux, CentOS and Scientific Linux are required
to install the Extra Packages Enterprise Linux (EPEL) repository.

NOTE: Support for Python 2.6 and 3.5 are discontinued. Support for Python 2.7 is limited to
Barman 3.4.X version and will receive only bugfixes. It will be discontinued in the near future.
Support for Python 3.6 will be discontinued in future releases. Support for PostgreSQL < 10
is discontinued since Barman 3.0.0. Support for PostgreSQL 10 will be discontinued after
Barman 3.5.0.

Requirements for backup

The most critical requirement for a Barman server is the amount of disk space available. You are
recommended to plan the required disk space based on the size of the cluster, number of WAL files
generated per day, frequency of backups, and retention policies.

Barman developers regularly test Barman with XFS and ext4. Like PostgreSQL, Barman does nothing
special for NFS. The following points are required for safely using Barman with NFS:

• The barman_lock_directory should be on a non-network filesystem.
• Use version 4 of the NFS protocol.
• The file system must be mounted using the hard and synchronous options (hard,sync).

Requirements for recovery

Barman allows you to recover a PostgreSQL instance either locally (where Barman resides) or remotely
(on a separate server).

Remote recovery is definitely the most common way to restore a PostgreSQL server with Barman.

Either way, the same requirements for PostgreSQL’s Log shipping and Point-In-Time-Recovery apply:

Copyright © 2010-2023, EnterpriseDB UK Limited 17

https://fedoraproject.org/wiki/EPEL
https://www.postgresql.org/docs/current/creating-cluster.html#CREATING-CLUSTER-FILESYSTEM
https://www.postgresql.org/docs/current/static/warm-standby.html#STANDBY-PLANNING

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• identical hardware architecture
• identical major version of PostgreSQL

In general, it is highly recommended to create recovery environments that are as similar as possible, if
not identical, to the original server, because they are easier to maintain. For example, we suggest that
you use the same operating system, the same PostgreSQL version, the same disk layouts, and so on.

Additionally, dedicated recovery environments for each PostgreSQL server, even on demand, allows
you to nurture the disaster recovery culture in your team. You can be prepared for when something
unexpected happens by practising recovery operations and becoming familiar with them.

Based on our experience, designated recovery environments reduce the impact of stress in real failure
situations, and therefore increase the effectiveness of recovery operations.

Finally, it is important that time is synchronised between the servers, using NTP for example.

Copyright © 2010-2023, EnterpriseDB UK Limited 18

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Installation

Official packages for Barman are distributed by EnterpriseDB through repositories listed on the Barman
downloads page.

These packages use the default python3 version provided by the target operating system. If an alternative
python3 version is required then you will need to install Barman from source.

IMPORTANT: The recommended way to install Barman is by using the available packages
for your GNU/Linux distribution.

Installation on Red Hat Enterprise Linux (RHEL) and RHEL-based systems
using RPM packages

Barman can be installed using RPM packages on RHEL8 and RHEL7 systems and the identical versions
of RHEL derivatives AlmaLinux, Oracle Linux, and Rocky Linux. It is required to install the Extra Packages
Enterprise Linux (EPEL) repository and the PostgreSQL Global Development Group RPM repository
beforehand.

Official RPM packages for Barman are distributed by EnterpriseDB via Yum through the public RPM
repository, by following the instructions you find on that website.

Then, as root simply type:

yum install barman

In addition to the Barman packages available in the EDB and PGDG repositories, Barman RPMs
published by the Fedora project can be found in EPEL. These RPMs are not maintained by the Barman
developers and use a different configuration layout to the packages available in the PGDG and EDB
repositories:

• EDB and PGDG packages use /etc/barman.conf as the main configuration file and
/etc/barman.d for additional configuration files.

• The Fedora packages use /etc/barman/barman.conf as the main configuration file and
/etc/barman/conf.d for additional configuration files.

The difference in configuration file layout means that upgrades between the EPEL and non-EPEL
Barman packages can break existing Barman installations until configuration files are manually updated.
We therefore recommend that you use a single source repository for Barman packages. This can be
achieved by adding the following line to the definition of the repositories from which you do not want to
obtain Barman packages:

exclude=barman* python*-barman

Copyright © 2010-2023, EnterpriseDB UK Limited 19

https://pgbarman.org/downloads/
https://pgbarman.org/downloads/
https://yum.postgresql.org/
https://rpm.2ndquadrant.com/
https://rpm.2ndquadrant.com/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Specifically:

• To use only Barman packages from the EDB repositories, add the exclude directive from above to
repository definitions in /etc/yum.repos.d/epel.repo and /etc/yum.repos.d/pgdg-*.repo.

• To use only Barman packages from the PGDG repositories, add the exclude directive from above to
repository definitions in /etc/yum.repos.d/epel.repo and /etc/yum.repos.d/enterprisedb*.repo.

• To use only Barman packages from the EPEL repositories, add the exclude directive from above to
repository definitions in /etc/yum.repos.d/pgdg-*.repo and /etc/yum.repos.d/enterprisedb*.repo.

Installation on Debian/Ubuntu using packages

Barman can be installed on Debian and Ubuntu Linux systems using packages.

It is directly available in the official repository for Debian and Ubuntu, however, these repositories
might not contain the latest available version. If you want to have the latest version of Barman, the
recommended method is to install both these repositories:

• Public APT repository, directly maintained by Barman developers
• the PostgreSQL Community APT repository, by following instructions in the APT section of the

PostgreSQL Wiki

NOTE: Thanks to the direct involvement of Barman developers in the PostgreSQL Community
APT repository project, you will always have access to the most updated versions of Barman.

Installing Barman is as easy. As root user simply type:

apt-get install barman

Installation on SLES using packages

Barman can be installed on SLES systems using packages available in the PGDG SLES repositories.
Install the necessary repository by following the instructions available on the PGDG site.

Supported SLES version: SLES 15 SP3.

Once the necessary repositories have been installed you can install Barman as the root user:

zypper install barman

Copyright © 2010-2023, EnterpriseDB UK Limited 20

https://apt.2ndquadrant.com/
https://apt.postgresql.org/
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://zypp.postgresql.org/
https://zypp.postgresql.org/howtozypp/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Installation from sources

WARNING: Manual installation of Barman from sources should only be performed by expert
GNU/Linux users. Installing Barman this way requires system administration activities such
as dependencies management, barman user creation, configuration of the barman.conf
file, cron setup for the barman cron command, log management, and so on.

Create a system user called barman on the backup server. As barman user, download the sources and
uncompress them.

For a system-wide installation, type:

barman@backup$./setup.py build
run this command with root privileges or through sudo
barman@backup# ./setup.py install

For a local installation, type:

barman@backup$./setup.py install --user

The barman application will be installed in your user directory (make sure that your PATH environment
variable is set properly).

Barman is also available on the Python Package Index (PyPI) and can be installed through pip.

PostgreSQL client/server binaries

The following Barman features depend on PostgreSQL binaries:

• Streaming backup with backup_method = postgres (requires pg_basebackup)
• Streaming WAL archiving with streaming_archiver = on (requires pg_receivewal or
pg_receivexlog)

• Verifying backups with barman verify-backup (requires pg_verifybackup)

Depending on the target OS these binaries are installed with either the PostgreSQL client or server
packages:

• On RedHat/CentOS and SLES:

– The pg_basebackup and pg_receivewal/pg_receivexlog binaries are installed with the
PostgreSQL client packages.

– The pg_verifybackup binary is installed with the PostgreSQL server packages.
– All binaries are installed in /usr/pgsql-${PG_MAJOR_VERSION}/bin.

Copyright © 2010-2023, EnterpriseDB UK Limited 21

https://docs.python.org/3/install/index.html#alternate-installation-the-user-scheme
https://docs.python.org/3/install/index.html#alternate-installation-the-user-scheme
https://pypi.python.org/pypi/barman/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• On Debian/Ubuntu:

– All binaries are installed with the PostgreSQL client packages.
– The binaries are installed in /usr/lib/postgresql/${PG_MAJOR_VERSION}/bin.

You must ensure that either:

1. The Barman user has the bin directory for the appropriate PG_MAJOR_VERSION on its path, or:
2. The path_prefix option is set in the Barman configuration for each server and points to the bin

directory for the appropriate PG_MAJOR_VERSION.

The psql program is recommended in addition to the above binaries. While Barman does not use it
directly the documentation provides examples of how it can be used to verify PostgreSQL connections
are working as intended. The psql binary can be found in the PostgreSQL client packages.

Third party PostgreSQL variants

If you are using Barman for the backup and recovery of third-party PostgreSQL variants then you will
need to check whether the PGDG client/server binaries described above are compatible with your variant.
If they are incompatible then you will need to install compatible alternatives from appropriate packages.

Upgrading Barman

Barman follows the trunk-based development paradigm, and as such there is only one stable version,
the latest. After every commit, Barman goes through thousands of automated tests for each supported
PostgreSQL version and on each supported Linux distribution.

Also, every version is back compatible with previous ones. Therefore, upgrading Barman normally
requires a simple update of packages using yum update or apt update.

There have been, however, the following exceptions in our development history, which required some
small changes to the configuration.

Upgrading to Barman 3.0.0

Default backup approach for Rsync backups is now concurrent

Barman will now use concurrent backups if neither concurrent_backup nor exclusive_backup are
specified in backup_options. This differs from previous Barman versions where the default was to use
exclusive backup.

Copyright © 2010-2023, EnterpriseDB UK Limited 22

https://www.postgresql.org/docs/current/app-psql.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

If you require exclusive backups you will now need to add exclusive_backup to backup_options in
the Barman configuration.

Note that exclusive backups are not supported at all when running against PostgreSQL 15.

Metadata changes

A new field named compression will be added to the metadata stored in the backup.info file for all
backups taken with version 3.0.0. This is used when recovering from backups taken using the built-in
compression functionality of pg_basebackup.

The presence of this field means that earlier versions of Barman are not able to read backups taken with
Barman 3.0.0. This means that if you downgrade from Barman 3.0.0 to an earlier version you will have
to either manually remove any backups taken with 3.0.0 or edit the backup.info file of each backup to
remove the compression field.

The same metadata change affects pg-backup-api so if you are using pg-backup-api you will need to
update it to version 0.2.0.

Upgrading from Barman 2.10

If you are using barman-cloud-wal-archive or barman-cloud-backup you need to be aware that from
version 2.11 all cloud utilities have been moved into the new barman-cli-cloud package. Therefore,
you need to ensure that the barman-cli-cloud package is properly installed as part of the upgrade to
the latest version. If you are not using the above tools, you can upgrade to the latest version as usual.

Upgrading from Barman 2.X (prior to 2.8)

Before upgrading from a version of Barman 2.7 or older users of rsync backup method on a primary
server should explicitly set backup_options to either concurrent_backup (recommended for Post-
greSQL 9.6 or higher) or exclusive_backup (current default), otherwise Barman emits a warning every
time it runs.

Upgrading from Barman 1.X

If your Barman installation is 1.X, you need to explicitly configure the archiving strategy. Before, the file
based archiver, controlled by archiver, was enabled by default.

Before you upgrade your Barman installation to the latest version, make sure you add the following line
either globally or for any server that requires it:

archiver = on

Additionally, for a few releases, Barman will transparently set archiver = on with any server that has
not explicitly set an archiving strategy and emit a warning.

Copyright © 2010-2023, EnterpriseDB UK Limited 23

https://github.com/EnterpriseDB/pg-backup-api

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Configuration

There are two types of configuration files in Barman:

• global/general configuration
• server configuration

The main configuration file (set to /etc/barman.conf by default) contains general options such as main
directory, system user, log file, and so on.

Server configuration files, one for each server to be backed up by Barman, are located in the
/etc/barman.d directory and must have a .conf suffix.

IMPORTANT: For historical reasons, you can still have one single configuration file contain-
ing both global and server options. However, for maintenance reasons, this approach is
deprecated.

Configuration files in Barman follow the INI format.

Configuration files accept distinct types of parameters:

• string
• enum
• integer
• boolean, on/true/1 are accepted as well are off/false/0.

None of them requires to be quoted.

NOTE: some enum allows off but not false.

Options scope

Every configuration option has a scope:

• global
• server
• global/server: server options that can be generally set at global level

Global options are allowed in the general section, which is identified in the INI file by the [barman] label:

[barman]
; ... global and global/server options go here

Copyright © 2010-2023, EnterpriseDB UK Limited 24

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Server options can only be specified in a server section, which is identified by a line in the configuration
file, in square brackets ([and]). The server section represents the ID of that server in Barman. The
following example specifies a section for the server named pg:

[pg]
; Configuration options for the
; server named 'pg' go here

There are two reserved words that cannot be used as server names in Barman:

• barman: identifier of the global section
• all: a handy shortcut that allows you to execute some commands on every server managed by

Barman in sequence

Barman implements the convention over configuration design paradigm, which attempts to reduce
the number of options that you are required to configure without losing flexibility. Therefore, some server
options can be defined at global level and overridden at server level, allowing users to specify a generic
behavior and refine it for one or more servers. These options have a global/server scope.

For a list of all the available configurations and their scope, please refer to section 5 of the ’man’ page.

man 5 barman

Examples of configuration

The following is a basic example of main configuration file:

[barman]
barman_user = barman
configuration_files_directory = /etc/barman.d
barman_home = /var/lib/barman
log_file = /var/log/barman/barman.log
log_level = INFO
compression = gzip

The example below, on the other hand, is a server configuration file that uses streaming backup:

[streaming-pg]
description = "Example of PostgreSQL Database (Streaming-Only)"
conninfo = host=pg user=barman dbname=postgres
streaming_conninfo = host=pg user=streaming_barman
backup_method = postgres
streaming_archiver = on
slot_name = barman

Copyright © 2010-2023, EnterpriseDB UK Limited 25

https://docs.pgbarman.org/barman.5.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

The following code shows a basic example of traditional backup using rsync/SSH:

[ssh-pg]
description = "Example of PostgreSQL Database (via Ssh)"
ssh_command = ssh postgres@pg
conninfo = host=pg user=barman dbname=postgres
backup_method = rsync
parallel_jobs = 1
reuse_backup = link
archiver = on

For more detailed information, please refer to the distributed barman.conf file, as well as the
ssh-server.conf-template and streaming-server.conf-template template files.

Copyright © 2010-2023, EnterpriseDB UK Limited 26

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Setup of a new server in Barman

As mentioned in the "Design and architecture" section, we will use the following conventions:

• pg as server ID and host name where PostgreSQL is installed
• backup as host name where Barman is located
• barman as the user running Barman on the backup server (identified by the parameter
barman_user in the configuration)

• postgres as the user running PostgreSQL on the pg server

IMPORTANT: a server in Barman must refer to the same PostgreSQL instance for the whole
backup and recoverability history (i.e. the same system identifier). This means that if you
perform an upgrade of the instance (using for example pg_upgrade, you must not
reuse the same server definition in Barman, rather use another one as they have
nothing in common.

Preliminary steps

This section contains some preliminary steps that you need to undertake before setting up your Post-
greSQL server in Barman.

IMPORTANT: Before you proceed, it is important that you have made your decision in terms
of WAL archiving and backup strategies, as outlined in the "Design and architecture" section.
In particular, you should decide which WAL archiving methods to use, as well as the backup
method.

PostgreSQL connection

You need to make sure that the backup server can connect to the PostgreSQL server on pg as superuser
or, that the correct set of privileges are granted to the user that connects to the database.

You can create a specific superuser in PostgreSQL, named barman, as follows:

postgres@pg$ createuser -s -P barman

Or create a normal user with the required set of privileges as follows:

postgres@pg$ createuser -P barman

Copyright © 2010-2023, EnterpriseDB UK Limited 27

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

GRANT EXECUTE ON FUNCTION pg_start_backup(text, boolean, boolean) to barman;
GRANT EXECUTE ON FUNCTION pg_stop_backup() to barman;
GRANT EXECUTE ON FUNCTION pg_stop_backup(boolean, boolean) to barman;
GRANT EXECUTE ON FUNCTION pg_switch_wal() to barman;
GRANT EXECUTE ON FUNCTION pg_create_restore_point(text) to barman;

GRANT pg_read_all_settings TO barman;
GRANT pg_read_all_stats TO barman;

In the PostgreSQL 15 beta and any subsequent PostgreSQL versions the functions pg_start_backup
and pg_stop_backup have been renamed and have different signatures. You will therefore need to
replace the first three lines in the above block with:

GRANT EXECUTE ON FUNCTION pg_backup_start(text, boolean) to barman;
GRANT EXECUTE ON FUNCTION pg_backup_stop(boolean) to barman;

It is worth noting that with PostgreSQL version 13 and below without a real superuser, the --force
option of the barman switch-wal command will not work.
If you are running PostgreSQL version 14 or above, you can grant the pg_checkpoint role, so you can
use this feature without a superuser:

GRANT pg_checkpoint TO barman;

IMPORTANT: The above createuser command will prompt for a password, which you
are then advised to add to the ~barman/.pgpass file on the backup server. For further
information, please refer to "The Password File" section in the PostgreSQL Documentation.

This connection is required by Barman in order to coordinate its activities with the server, as well as for
monitoring purposes.

You can choose your favourite client authentication method among those offered by PostgreSQL. More
information can be found in the "Client Authentication" section of the PostgreSQL Documentation.

Run the following command as the barman user on the backup host in order to verify that the backup
host can connect to PostgreSQL on the pg host:

barman@backup$ psql -c 'SELECT version()' -U barman -h pg postgres

Write down the above information (user name, host name and database name) and keep it for later. You
will need it with in the conninfo option for your server configuration, like in this example:

[pg]
; ...
conninfo = host=pg user=barman dbname=postgres application_name=myapp

NOTE: application_name is optional.

Copyright © 2010-2023, EnterpriseDB UK Limited 28

https://www.postgresql.org/docs/current/static/libpq-pgpass.html
https://www.postgresql.org/docs/current/static/client-authentication.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

PostgreSQL WAL archiving and replication

Before you proceed, you need to properly configure PostgreSQL on pg to accept streaming repli-
cation connections from the Barman server. Please read the following sections in the PostgreSQL
documentation:

• Role attributes
• The pg_hba.conf file
• Setting up standby servers using streaming replication

One configuration parameter that is crucially important is the wal_level parameter. This parameter
must be configured to ensure that all the useful information necessary for a backup to be coherent are
included in the transaction log file.

wal_level = 'replica'|'logical'

Restart the PostgreSQL server for the configuration to be refreshed.

PostgreSQL streaming connection

If you plan to use WAL streaming or streaming backup, you need to setup a streaming connection. We
recommend creating a specific user in PostgreSQL, named streaming_barman, as follows:

postgres@pg$ createuser -P --replication streaming_barman

IMPORTANT: The above command will prompt for a password, which you are then advised
to add to the ~barman/.pgpass file on the backup server. For further information, please
refer to "The Password File" section in the PostgreSQL Documentation.

You can manually verify that the streaming connection works through the following command:

barman@backup$ psql -U streaming_barman -h pg \
-c "IDENTIFY_SYSTEM" \
replication=1

If the connection is working you should see a response containing the system identifier, current timeline
ID and current WAL flush location, for example:

systemid | timeline | xlogpos | dbname
---------------------+----------+------------+--------
7139870358166741016 | 1 | 1/330000D8 |
(1 row)

Copyright © 2010-2023, EnterpriseDB UK Limited 29

https://www.postgresql.org/docs/current/static/role-attributes.html
https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/static/protocol-replication.html
https://www.postgresql.org/docs/current/static/libpq-pgpass.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

IMPORTANT: Please make sure you are able to connect via streaming replication before
going any further.

You also need to configure the max_wal_senders parameter in the PostgreSQL configuration file. The
number of WAL senders depends on the PostgreSQL architecture you have implemented. In this
example, we are setting it to 2:

max_wal_senders = 2

This option represents the maximum number of concurrent streaming connections that the server will be
allowed to manage.

Another important parameter is max_replication_slots, which represents the maximum number of
replication slots 5 that the server will be allowed to manage. This parameter is needed if you are planning
to use the streaming connection to receive WAL files over the streaming connection:

max_replication_slots = 2

The values proposed for max_replication_slots and max_wal_senders must be considered as
examples, and the values you will use in your actual setup must be chosen after a careful evaluation of
the architecture. Please consult the PostgreSQL documentation for guidelines and clarifications.

SSH connections

SSH is a protocol and a set of tools that allows you to open a remote shell to a remote server and copy
files between the server and the local system. You can find more documentation about SSH usage in
the article "SSH Essentials" by Digital Ocean.

SSH key exchange is a very common practice that is used to implement secure passwordless connections
between users on different machines, and it’s needed to use rsync for WAL archiving and for backups.

NOTE: This procedure is not needed if you plan to use the streaming connection only to
archive transaction logs and backup your PostgreSQL server.

SSH configuration of postgres user

Unless you have done it before, you need to create an SSH key for the PostgreSQL user. Log in as
postgres, in the pg host and type:

postgres@pg$ ssh-keygen -t rsa

As this key must be used to connect from hosts without providing a password, no passphrase should be
entered during the key pair creation.

5Replication slots have been introduced in PostgreSQL 9.4. See section "WAL Streaming / Replication slots" for details.

Copyright © 2010-2023, EnterpriseDB UK Limited 30

https://www.digitalocean.com/community/tutorials/ssh-essentials-working-with-ssh-servers-clients-and-keys

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

SSH configuration of barman user

As in the previous paragraph, you need to create an SSH key for the Barman user. Log in as barman in
the backup host and type:

barman@backup$ ssh-keygen -t rsa

For the same reason, no passphrase should be entered.

From PostgreSQL to Barman

The SSH connection from the PostgreSQL server to the backup server is needed to correctly archive
WAL files using the archive_command setting.

To successfully connect from the PostgreSQL server to the backup server, the PostgreSQL public key
has to be configured into the authorized keys of the backup server for the barman user.

The public key to be authorized is stored inside the postgres user home directory in a file named
.ssh/id_rsa.pub, and its content should be included in a file named .ssh/authorized_keys inside
the home directory of the barman user in the backup server. If the authorized_keys file doesn’t exist,
create it using 600 as permissions.

The following command should succeed without any output if the SSH key pair exchange has been
completed successfully:

postgres@pg$ ssh barman@backup -C true

The value of the archive_command configuration parameter will be discussed in the "WAL archiving via
archive_command section".

From Barman to PostgreSQL

The SSH connection between the backup server and the PostgreSQL server is used for the traditional
backup over rsync. Just as with the connection from the PostgreSQL server to the backup server, we
should authorize the public key of the backup server in the PostgreSQL server for the postgres user.

The content of the file .ssh/id_rsa.pub in the barman server should be put in the file named
.ssh/authorized_keys in the PostgreSQL server. The permissions of that file should be 600.

The following command should succeed without any output if the key pair exchange has been completed
successfully.

barman@backup$ ssh postgres@pg -C true

Copyright © 2010-2023, EnterpriseDB UK Limited 31

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

The server configuration file

Create a new file, called pg.conf, in /etc/barman.d directory, with the following content:

[pg]
description = "Our main PostgreSQL server"
conninfo = host=pg user=barman dbname=postgres
backup_method = postgres
backup_method = rsync

The conninfo option is set accordingly to the section "Preliminary steps: PostgreSQL connection".

The meaning of the backup_method option will be covered in the backup section of this guide.

If you plan to use the streaming connection for WAL archiving or to create a backup of your server, you
also need a streaming_conninfo parameter in your server configuration file:

streaming_conninfo = host=pg user=streaming_barman dbname=postgres

This value must be chosen accordingly as described in the section "Preliminary steps: PostgreSQL
connection".

WAL streaming

Barman can reduce the Recovery Point Objective (RPO) by allowing users to add continuous WAL
streaming from a PostgreSQL server, on top of the standard archive_command strategy.

Barman relies on pg_receivewal, it exploits the native streaming replication protocol and continuously
receives transaction logs from a PostgreSQL server (master or standby). Prior to PostgreSQL 10,
pg_receivewal was named pg_receivexlog.

IMPORTANT: Barman requires that pg_receivewal is installed on the same server. It
is recommended to install the latest available version of pg_receivewal, as it is back
compatible. Otherwise, users can install multiple versions of pg_receivewal on the Barman
server and properly point to the specific version for a server, using the path_prefix option
in the configuration file.

In order to enable streaming of transaction logs, you need to:

1. setup a streaming connection as previously described
2. set the streaming_archiver option to on

The cron command, if the aforementioned requirements are met, transparently manages log streaming
through the execution of the receive-wal command. This is the recommended scenario.

However, users can manually execute the receive-wal command:

Copyright © 2010-2023, EnterpriseDB UK Limited 32

https://www.postgresql.org/docs/current/static/app-pgreceivewal.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

barman receive-wal <server_name>

NOTE: The receive-wal command is a foreground process.

Transaction logs are streamed directly in the directory specified by the streaming_wals_directory
configuration option and are then archived by the archive-wal command.

Unless otherwise specified in the streaming_archiver_name parameter, Barman will set
application_name of the WAL streamer process to barman_receive_wal, allowing you to
monitor its status in the pg_stat_replication system view of the PostgreSQL server.

Replication slots

Replication slots are an automated way to ensure that the PostgreSQL server will not remove WAL files
until they were received by all archivers. Barman uses this mechanism to receive the transaction logs
from PostgreSQL.

You can find more information about replication slots in the PostgreSQL manual.

You can even base your backup architecture on streaming connection only. This scenario is useful to
configure Docker-based PostgreSQL servers and even to work with PostgreSQL servers running on
Windows.

IMPORTANT: At this moment, the Windows support is still experimental, as it is not yet part
of our continuous integration system.

How to configure the WAL streaming

First, the PostgreSQL server must be configured to stream the transaction log files to the Barman server.

To configure the streaming connection from Barman to the PostgreSQL server you need to enable the
streaming_archiver, as already said, including this line in the server configuration file:

streaming_archiver = on

If you plan to use replication slots (recommended), another essential option for the setup of the streaming-
based transaction log archiving is the slot_name option:

slot_name = barman

This option defines the name of the replication slot that will be used by Barman. It is mandatory if you
want to use replication slots.

When you configure the replication slot name, you can manually create a replication slot for Barman with
this command:

Copyright © 2010-2023, EnterpriseDB UK Limited 33

https://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION-SLOTS

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

barman@backup$ barman receive-wal --create-slot pg
Creating physical replication slot 'barman' on server 'pg'
Replication slot 'barman' created

Starting with Barman 2.10, you can configure Barman to automatically create the replication slot by
setting:

create_slot = auto

Limitations of partial WAL files with recovery

The standard behaviour of pg_receivewal is to write transactional information in a file with .partial
suffix after the WAL segment name.

Barman expects a partial file to be in the streaming_wals_directory of a server. When completed,
pg_receivewal removes the .partial suffix and opens the following one, delivering the file to the
archive-wal command of Barman for permanent storage and compression.

In case of a sudden and unrecoverable failure of the master PostgreSQL server, the .partial file that
has been streamed to Barman contains very important information that the standard archiver (through
PostgreSQL’s archive_command) has not been able to deliver to Barman.

As of Barman 2.10, the get-wal command is able to return the content of the current .partialWAL
file through the --partial/-P option. This is particularly useful in the case of recovery, both full or to
a point in time. Therefore, in case you run a recover command with get-wal enabled, and without
--standby-mode, Barman will automatically add the -P option to barman-wal-restore (which will then
relay that to the remote get-wal command) in the restore_command recovery option.

get-wal will also search in the incoming directory, in case a WAL file has already been shipped to
Barman, but not yet archived.

WAL archiving via archive_command

The archive_command is the traditional method to archive WAL files.

The value of this PostgreSQL configuration parameter must be a shell command to be executed by the
PostgreSQL server to copy the WAL files to the Barman incoming directory.

This can be done in two ways, both requiring a SSH connection:

• via barman-wal-archive utility (from Barman 2.6)
• via rsync/SSH (common approach before Barman 2.6)

See sections below for more details.

IMPORTANT: Read the "Concurrent Backup and backup from a standby" section for more
detailed information on how Barman supports this feature.

Copyright © 2010-2023, EnterpriseDB UK Limited 34

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

WAL archiving via barman-wal-archive

From Barman 2.6, the recommended way to safely and reliably archive WAL files to Barman via
archive_command is to use the barman-wal-archive command contained in the barman-cli package,
distributed via EnterpriseDB public repositories and available under GNU GPL 3 licence. barman-cli
must be installed on each PostgreSQL server that is part of the Barman cluster.

Using barman-wal-archive instead of rsync/SSH reduces the risk of data corruption of the shipped
WAL file on the Barman server. When using rsync/SSH as archive_command a WAL file, there is no
mechanism that guarantees that the content of the file is flushed and fsync-ed to disk on destination.

For this reason, we have developed the barman-wal-archive utility that natively communicates with
Barman’s put-wal command (introduced in 2.6), which is responsible to receive the file, fsync its content
and place it in the proper incoming directory for that server. Therefore, barman-wal-archive reduces
the risk of copying a WAL file in the wrong location/directory in Barman, as the only parameter to be
used in the archive_command is the server’s ID.

For more information on the barman-wal-archive command, type man barman-wal-archive on the
PostgreSQL server.

You can check that barman-wal-archive can connect to the Barman server, and that the required
PostgreSQL server is configured in Barman to accept incoming WAL files with the following command:

barman-wal-archive --test backup pg DUMMY

Where backup is the host where Barman is installed, pg is the name of the PostgreSQL server as
configured in Barman and DUMMY is a placeholder (barman-wal-archive requires an argument for
the WAL file name, which is ignored).

If everything is configured correctly you should see the following output:

Ready to accept WAL files for the server pg

Since it uses SSH to communicate with the Barman server, SSH key authentication is required for the
postgres user to login as barman on the backup server. If a port other than the SSH default of 22
should be used then the --port option can be added to specify the port that should be used for the
SSH connection.

Edit the postgresql.conf file of the PostgreSQL instance on the pg database, activate the archive
mode and set archive_command to use barman-wal-archive:

archive_mode = on
wal_level = 'replica'
archive_command = 'barman-wal-archive backup pg %p'

Then restart the PostgreSQL server.

Copyright © 2010-2023, EnterpriseDB UK Limited 35

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

WAL archiving via rsync/SSH

You can retrieve the incoming WALs directory using the show-servers Barman command and looking
for the incoming_wals_directory value:

barman@backup$ barman show-servers pg |grep incoming_wals_directory
incoming_wals_directory: /var/lib/barman/pg/incoming

Edit the postgresql.conf file of the PostgreSQL instance on the pg database and activate the archive
mode:

archive_mode = on
wal_level = 'replica'
archive_command = 'rsync -a %p barman@backup:INCOMING_WALS_DIRECTORY/%f'

Make sure you change the INCOMING_WALS_DIRECTORY placeholder with the value returned by the
barman show-servers pg command above.

Restart the PostgreSQL server.

In some cases, you might want to add stricter checks to the archive_command process. For example,
some users have suggested the following one:

archive_command = 'test $(/bin/hostname --fqdn) = HOSTNAME \
&& rsync -a %p barman@backup:INCOMING_WALS_DIRECTORY/%f'

Where the HOSTNAME placeholder should be replaced with the value returned by hostname --fqdn.
This trick is a safeguard in case the server is cloned and avoids receiving WAL files from recovered
PostgreSQL instances.

Verification of WAL archiving configuration

In order to test that continuous archiving is on and properly working, you need to check both the
PostgreSQL server and the backup server. In particular, you need to check that WAL files are correctly
collected in the destination directory.

For this purpose and to facilitate the verification of the WAL archiving process, the switch-wal command
has been developed:

barman@backup$ barman switch-wal --force --archive pg

The above command will force PostgreSQL to switch WAL file and trigger the archiving process in
Barman. Barman will wait for one file to arrive within 30 seconds (you can change the timeout through
the --archive-timeout option). If no WAL file is received, an error is returned.

You can verify if the WAL archiving has been correctly configured using the barman check command.

Copyright © 2010-2023, EnterpriseDB UK Limited 36

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Streaming backup

Barman can backup a PostgreSQL server using the streaming connection, relying on pg_basebackup.

IMPORTANT: Barman requires that pg_basebackup is installed in the same server. It is
recommended to install the last available version of pg_basebackup, as it is backwards
compatible. You can even install multiple versions of pg_basebackup on the Barman server
and properly point to the specific version for a server, using the path_prefix option in the
configuration file.

To successfully backup your server with the streaming connection, you need to use postgres as your
backup method:

backup_method = postgres

IMPORTANT: You will not be able to start a backup if WAL is not being correctly archived to
Barman, either through the archiver or the streaming_archiver

To check if the server configuration is valid you can use the barman check command:

barman@backup$ barman check pg

To start a backup you can use the barman backup command:

barman@backup$ barman backup pg

Backup with rsync/SSH

The backup over rsync was the only available method before 2.0, and is currently the only backup
method that supports the incremental backup feature. Please consult the "Features in detail" section for
more information.

To take a backup using rsync you need to put these parameters inside the Barman server configuration
file:

backup_method = rsync
ssh_command = ssh postgres@pg

The backup_method option activates the rsync backup method, and the ssh_command option is needed
to correctly create an SSH connection from the Barman server to the PostgreSQL server.

Copyright © 2010-2023, EnterpriseDB UK Limited 37

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

IMPORTANT: You will not be able to start a backup if WAL is not being correctly archived to
Barman, either through the archiver or the streaming_archiver

To check if the server configuration is valid you can use the barman check command:

barman@backup$ barman check pg

To take a backup use the barman backup command:

barman@backup$ barman backup pg

Backup with cloud snapshots

Barman is able to create backups of PostgreSQL servers deployed within certain cloud environments
by taking snapshots of storage volumes. When configured in this manner the physical backups of
PostgreSQL files are volume snapshots stored in the cloud while Barman acts as a storage server for
WALs and the backup catalog. These backups can then be managed by Barman just like traditional
backups taken with the rsync or postgres backup methods even though the backup data itself is stored
in the cloud.

It is also possible to create snapshot backups without a Barman server using the barman-cloud-backup
command directly on a suitable PostgreSQL server.

Prerequisites for cloud snapshots

In order to use the snapshot backup method with Barman, deployments must meet the following
prerequisites:

• PostgreSQL must be deployed on a compute instance within a supported cloud provider.
• PostgreSQL must be configured such that all critical data, such as PGDATA and any tablespace

data, is stored on storage volumes which support snapshots.
• The findmnt command must be available on the PostgreSQL host.

IMPORTANT: Any configuration files stored outside of PGDATA will not be included in the
snapshots. The management of such files must be carried out using another mechanism
such as a configuration management system.

Google Cloud Platform snapshot prerequisites

The google-cloud-compute and grpcio libraries must be available to the Python distribution used by
Barman. These libraries are an optional dependency and are not installed as standard by any of the
Barman packages. They can be installed as follows using pip:

Copyright © 2010-2023, EnterpriseDB UK Limited 38

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

pip3 install grpcio google-cloud-compute

NOTE: The minimum version of Python required by the google-cloud-compute library is 3.7.
GCP snapshots cannot be used with earlier versions of Python.

The following additional prerequisites apply to snapshot backups on Google Cloud Platform:

• All disks included in the snapshot backup must be zonal persistent disks. Regional persistent disks
are not currently supported.

• A service account with the required set of permissions must be available to Barman. This can be
achieved by attaching such an account to the compute instance running Barman (recommended)
or by using the GOOGLE_APPLICATION_CREDENTIALS environment variable to point to a credentials
file.

The required permissions are:

• compute.disks.createSnapshot
• compute.disks.get
• compute.globalOperations.get
• compute.instances.get
• compute.snapshots.create
• compute.snapshots.delete
• compute.snapshots.list

Azure snapshot prerequisites

The azure-mgmt-compute and azure-identity libraries must be available to the Python distribution used
by Barman.

These libraries are an optional dependency and are not installed as standard by any of the Barman
packages. They can be installed as follows using pip:

pip3 install azure-mgmt-compute azure-identity

NOTE: The minimum version of Python required by the azure-mgmt-compute library is 3.7.
Azure snapshots cannot be used with earlier versions of Python.

The following additional prerequisites apply to snapshot backups on Azure:

• All disks included in the snapshot backup must be managed disks which are attached to the VM
instance as data disks.

• Barman must be able to use a credential obtained either using managed identity or CLI login and
this must grant access to Azure with the required set of permissions.

Copyright © 2010-2023, EnterpriseDB UK Limited 39

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

The following permissions are required:

• Microsoft.Compute/disks/read
• Microsoft.Compute/virtualMachines/read
• Microsoft.Compute/snapshots/read
• Microsoft.Compute/snapshots/write
• Microsoft.Compute/snapshots/delete

AWS snapshot prerequisites

The boto3 library must be available to the Python distribution used by Barman.

This library is an optional dependency and not installed as standard by any of the Barman packages. It
can be installed as follows using pip:

pip3 install boto3

The following additional prerequisites apply to snapshot backups on AWS:

• All disks included in the snapshot backup must be non-root EBS volumes and must be attached to
the same VM instance.

• NVMe volumes are not currently supported.

The following permissions are required:

• ec2:CreateSnapshot
• ec2:CreateTags
• ec2:DeleteSnapshot
• ec2:DescribeSnapshots
• ec2:DescribeInstances
• ec2:DescribeVolumes

Configuration for snapshot backups

To configure Barman for backup via cloud snapshots, set the backup_method parameter to snapshot
and set snapshot_provider to a supported cloud provider:

backup_method = snapshot
snapshot_provider = gcp

Currently Google Cloud Platform (gcp), Microsoft Azure (azure) and AWS (aws) are supported.

The following parameters must be set regardless of cloud provider:

Copyright © 2010-2023, EnterpriseDB UK Limited 40

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

snapshot_instance = INSTANCE_NAME
snapshot_disks = DISK_NAME,DISK2_NAME,...

Where snapshot_instance is set to the name of the VM or compute instance where the storage
volumes are attached and snapshot_disks is a comma-separated list of the disks which should be
included in the backup.

IMPORTANT: You must ensure that snapshot_disks includes every disk which stores
data required by PostgreSQL. Any data which is not stored on a storage volume listed in
snapshot_disks will not be included in the backup and therefore will not be available at
recovery time.

Configuration for Google Cloud Platform snapshots

The following additional parameters must be set when using GCP:

gcp_project = GCP_PROJECT_ID
gcp_zone = ZONE

gcp_project should be set to the ID of the GCP project which owns the instance and storage volumes
defined by snapshot_instance and snapshot_disks. gcp_zone should be set to the availability zone
in which the instance is located.

Configuration for Azure snapshots

The following additional parameters must be set when using Azure:

azure_subscription_id = AZURE_SUBSCRIPTION_ID
azure_resource_group = AZURE_RESOURCE_GROUP

azure_subscription_id should be set to the ID of the Azure subscription ID which owns the instance
and storage volumes defined by snapshot_instance and snapshot_disks. azure_resource_group
should be set to the resource group to which the instance and disks belong.

Configuration for AWS snapshots

When specifying snapshot_instance or snapshot_disks, Barman will accept either the in-
stance/volume ID which was assigned to the resource by AWS or a name. If a name is used then
Barman will query AWS to find resources with a matching Name tag. If zero or multiple matching
resources are found then Barman will exit with an error.

The following optional parameters can be set when using AWS:

Copyright © 2010-2023, EnterpriseDB UK Limited 41

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

aws_region = AWS_REGION
aws_profile = AWS_PROFILE_NAME

If aws_profile is used it should be set to the name of a section in the AWS credentials file. If
aws_profile is not used then the default profile will be used. If no credentials file exists then credentials
will be sourced from the environment.

If aws_region is specified it will override any region that may be defined in the AWS profile.

Taking a snapshot backup

Once the configuration options are set and appropriate credentials are available to Barman, backups
can be taken using the barman backup command.

Barman will validate the configuration parameters for snapshot backups during the barman check
command and also when starting a backup.

Note that the following arguments / config variables are unavailable when using backup_method =
snapshot:

Command argument Config variable

N/A backup_compression

--bwlimit bandwidth_limit

--jobs parallel_jobs

N/A network_compression

--reuse-backup reuse_backup

For a more in-depth discussion of snapshot backups, including considerations around management and
recovery of snapshot backups, see the cloud snapshots section in feature details.

How to setup a Windows based server

You can backup a PostgreSQL server running on Windows using the streaming connection for both WAL
archiving and for backups.

IMPORTANT: This feature is still experimental because it is not yet part of our continuous
integration system.

Follow every step discussed previously for a streaming connection setup.

Copyright © 2010-2023, EnterpriseDB UK Limited 42

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

WARNING:: At this moment, pg_basebackup interoperability from Windows to Linux is still
experimental. If you are having issues taking a backup from a Windows server and your
PostgreSQL locale is not in English, a possible workaround for the issue is instructing your
PostgreSQL to emit messages in English. You can do this by putting the following parameter
in your postgresql.conf file:

lc_messages = 'English'

This has been reported to fix the issue.

You can backup your server as usual.

Remote recovery is not supported for Windows servers, so you must recover your cluster locally in the
Barman server and then copy all the files on a Windows server or use a folder shared between the
PostgreSQL server and the Barman server.

Additionally, make sure that the system user chosen to run PostgreSQL has the permission needed to
access the restored data. Basically, it must have full control over the PostgreSQL data directory.

Copyright © 2010-2023, EnterpriseDB UK Limited 43

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

General commands

Barman has many commands and, for the sake of exposition, we can organize them by scope.

The scope of the general commands is the entire Barman server, that can backup many PostgreSQL
servers. Server commands, instead, act only on a specified server. Backup commands work on a
backup, which is taken from a certain server.

The following list includes the general commands.

cron

barman doesn’t include a long-running daemon or service file (there’s nothing to systemctl start,
service start, etc.). Instead, the barman cron subcommand is provided to perform barman’s back-
ground "steady-state" backup operations.

You can perform maintenance operations, on both WAL files and backups, using the cron command:

barman cron

NOTE: This command should be executed in a cron script. Our recommendation is to
schedule barman cron to run every minute. If you installed Barman using the rpm or debian
package, a cron entry running on every minute will be created for you.

barman cron executes WAL archiving operations concurrently on a server basis, and this also enforces
retention policies on those servers that have:

• retention_policy not empty and valid;
• retention_policy_mode set to auto.

The cron command ensures that WAL streaming is started for those servers that have requested it, by
transparently executing the receive-wal command.

In order to stop the operations started by the cron command, comment out the cron entry and execute:

barman receive-wal --stop SERVER_NAME

You might want to check barman list-servers to make sure you get all of your servers.

NOTE: barman cron runs background maintenance tasks only and is not responsible for
running scheduled backups. Any regularly scheduled backup jobs you require must be
scheduled separately, for example in another cron entry which runs barman backup all.

Copyright © 2010-2023, EnterpriseDB UK Limited 44

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

diagnose

The diagnose command creates a JSON report useful for diagnostic and support purposes. This report
contains information for all configured servers.

IMPORTANT: Even if the diagnose is written in JSON and that format is thought to be
machine readable, its structure is not to be considered part of the interface. Format can
change between different Barman versions.

list-servers

You can display the list of active servers that have been configured for your backup system with:

barman list-servers

A machine readable output can be obtained with the --minimal option:

barman list-servers --minimal

Copyright © 2010-2023, EnterpriseDB UK Limited 45

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Server commands

As we said in the previous section, server commands work directly on a PostgreSQL server or on its
area in Barman, and are useful to check its status, perform maintenance operations, take backups, and
manage the WAL archive.

archive-wal

The archive-wal command execute maintenance operations on WAL files for a given server. This
operations include processing of the WAL files received from the streaming connection or from the
archive_command or both.

IMPORTANT: The archive-wal command, even if it can be directly invoked, is designed to
be started from the cron general command.

backup

The backup command takes a full backup (base backup) of the given servers. It has several options that
let you override the corresponding configuration parameter for the new backup. For more information,
consult the manual page.

You can perform a full backup for a given server with:

barman backup <server_name>

TIP: You can use barman backup all to sequentially backup all your configured servers.

TIP: You can use barman backup <server_1_name> <server_2_name> to sequentially
backup both <server_1_name> and <server_2_name> servers.

Barman 2.10 introduces the -w/--wait option for the backup command. When set, Barman temporarily
saves the state of the backup to WAITING_FOR_WALS, then waits for all the required WAL files to
be archived before setting the state to DONE and proceeding with post-backup hook scripts. If the
--wait-timeout option is provided, Barman will stop waiting for WAL files after the specified number
of seconds, and the state will remain in WAITING_FOR_WALS.The cron command will continue to check
that missing WAL files are archived, then label the backup as DONE.

Copyright © 2010-2023, EnterpriseDB UK Limited 46

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

check

You can check the connection to a given server and the configuration coherence with the check
command:

barman check <server_name>

TIP: You can use barman check all to check all your configured servers.

IMPORTANT: The check command is probably the most critical feature that Barman imple-
ments. We recommend to integrate it with your alerting and monitoring infrastructure. The
--nagios option allows you to easily create a plugin for Nagios/Icinga.

generate-manifest

This command is useful when backup is created remotely and pg_basebackup is not involved and
backup_manifest file does not exist in backup. It will generate backup_manifest file from backup_id
using backup in barman server. If the file already exist, generation command will abort.

Command example:

barman generate-manifest <server_name> <backup_id>

Either backup_id backup id shortcuts can be used.

This command can also be used as post_backup hook script as follows:

post_backup_script=barman generate-manifest ${BARMAN_SERVER} ${BARMAN_BACKUP_ID}

get-wal

Barman allows users to request any xlog file from its WAL archive through the get-wal command:

barman get-wal [-o OUTPUT_DIRECTORY][-j|-x] <server_name> <wal_id>

If the requested WAL file is found in the server archive, the uncompressed content will be returned to
STDOUT, unless otherwise specified.

The following options are available for the get-wal command:

• -o allows users to specify a destination directory where Barman will deposit the requested WAL
file

• -j will compress the output using bzip2 algorithm

Copyright © 2010-2023, EnterpriseDB UK Limited 47

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• -x will compress the output using gzip algorithm
• -p SIZE peeks from the archive up to WAL files, starting from the requested file

It is possible to use get-wal during a recovery operation, transforming the Barman server into a
WAL hub for your servers. This can be automatically achieved by adding the get-wal value to the
recovery_options global/server configuration option:

recovery_options = 'get-wal'

recovery_options is a global/server option that accepts a list of comma separated values. If the
keyword get-wal is present during a recovery operation, Barman will prepare the recovery configuration
by setting the restore_command so that barman get-wal is used to fetch the required WAL files.
Similarly, one can use the --get-wal option for the recover command at run-time.

If get-wal is set in recovery_options but not required during a recovery operation then the
--no-get-wal option can be used with the recover command to disable the get-wal recovery option.

This is an example of a restore_command for a local recovery:

restore_command = 'sudo -u barman barman get-wal SERVER %f > %p'

Please note that the get-wal command should always be invoked as barman user, and that it requires
the correct permission to read the WAL files from the catalog. This is the reason why we are using sudo
-u barman in the example.

Setting recovery_options to get-wal for a remote recovery will instead generate a restore_command
using the barman-wal-restore script. barman-wal-restore is a more resilient shell script which
manages SSH connection errors.

This script has many useful options such as the automatic compression and decompression of the WAL
files and the peek feature, which allows you to retrieve the next WAL files while PostgreSQL is applying
one of them. It is an excellent way to optimise the bandwidth usage between PostgreSQL and Barman.

barman-wal-restore is available in the barman-cli package.

This is an example of a restore_command for a remote recovery:

restore_command = 'barman-wal-restore -U barman backup SERVER %f %p'

Since it uses SSH to communicate with the Barman server, SSH key authentication is required for the
postgres user to login as barman on the backup server. If a port other than the SSH default of 22
should be used then the --port option can be added to specify the port that should be used for the
SSH connection.

You can check that barman-wal-restore can connect to the Barman server, and that the required
PostgreSQL server is configured in Barman to send WAL files with the following command:

Copyright © 2010-2023, EnterpriseDB UK Limited 48

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

barman-wal-restore --test backup pg DUMMY DUMMY

Where backup is the host where Barman is installed, pg is the name of the PostgreSQL server as
configured in Barman and DUMMY is a placeholder (barman-wal-restore requires two argument for
the WAL file name and destination directory, which are ignored).

If everything is configured correctly you should see the following output:

Ready to retrieve WAL files from the server pg

For more information on the barman-wal-restore command, type man barman-wal-restore on the
PostgreSQL server.

list-backups

You can list the catalog of available backups for a given server with:

barman list-backups <server_name>

TIP: You can request a full list of the backups of all servers using all as the server name.

To have a machine-readable output you can use the --minimal option.

rebuild-xlogdb

At any time, you can regenerate the content of the WAL archive for a specific server (or every server,
using the all shortcut). The WAL archive is contained in the xlog.db file and every server managed by
Barman has its own copy.

The xlog.db file can be rebuilt with the rebuild-xlogdb command. This will scan all the archived WAL
files and regenerate the metadata for the archive.

For example:

barman rebuild-xlogdb <server_name>

receive-wal

This command manages the receive-wal process, which uses the streaming protocol to receive WAL
files from the PostgreSQL streaming connection.

Copyright © 2010-2023, EnterpriseDB UK Limited 49

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

receive-wal process management

If the command is run without options, a receive-wal process will be started. This command is based
on the pg_receivewal PostgreSQL command.

barman receive-wal <server_name>

NOTE: The receive-wal command is a foreground process.

If the command is run with the --stop option, the currently running receive-wal process will be
stopped.

The receive-wal process uses a status file to track last written record of the transaction log. When the
status file needs to be cleaned, the --reset option can be used.

IMPORTANT: If you are not using replication slots, you rely on the value of
wal_keep_segments (or wal_keep_size from PostgreSQL version 13.0 onwards).
Be aware that under high peaks of workload on the database, the receive-wal process
might fall behind and go out of sync. As a precautionary measure, Barman currently requires
that users manually execute the command with the --reset option, to avoid making wrong
assumptions.

Replication slot management

The receive-wal process is also useful to create or drop the replication slot needed by Barman for its
WAL archiving procedure.

With the --create-slot option, the replication slot named after the slot_name configuration option will
be created on the PostgreSQL server.

With the --drop-slot, the previous replication slot will be deleted.

replication-status

The replication-status command reports the status of any streaming client currently attached to the
PostgreSQL server, including the receive-wal process of your Barman server (if configured).

You can execute the command as follows:

barman replication-status <server_name>

TIP: You can request a full status report of the replica for all your servers using all as the
server name.

To have a machine-readable output you can use the --minimal option.

Copyright © 2010-2023, EnterpriseDB UK Limited 50

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

show-servers

You can show the configuration parameters for a given server with:

barman show-servers <server_name>

TIP: you can request a full configuration report using all as the server name.

status

The status command shows live information and status of a PostgreSQL server or of all servers if you
use all as server name.

barman status <server_name>

switch-wal

This command makes the PostgreSQL server switch to another transaction log file (WAL), allowing the
current log file to be closed, received and then archived.

barman switch-wal <server_name>

If there has been no transaction activity since the last transaction log file switch, the switch needs to be
forced using the --force option.

The --archive option requests Barman to trigger WAL archiving after the xlog switch. By default, a 30
seconds timeout is enforced (this can be changed with --archive-timeout). If no WAL file is received,
an error is returned.

NOTE: In Barman 2.1 and 2.2 this command was called switch-xlog. It has been renamed
for naming consistency with PostgreSQL 10 and higher.

verify-backup

The verify-backup command uses backup_manifest file from backup and runs pg_verifybackup
against it.

barman verify-backup <server_name> <backup_id>

This command will call pg_verifybackup <path_to_backup_manifest> -n (available on PG>=13)
pg_verifybackup Must be installed on backup server. For rsync backups, it can be used with
generate-manifest command.

Either backup_id backup id shortcuts can be used.

Copyright © 2010-2023, EnterpriseDB UK Limited 51

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Backup commands

Backup commands are those that works directly on backups already existing in Barman’s backup catalog.

NOTE: Remember a backup ID can be retrieved with barman list-backups
<server_name>

Backup ID shortcuts

Barman allows you to use special keywords to identify a specific backup:

• last/latest: identifies the newest backup in the catalog
• first/oldest: identifies the oldest backup in the catalog
• last-failed: identifies the newest failed backup in the catalog

Using those keywords with Barman commands allows you to execute actions without knowing the exact
ID of a backup for a server. For example we can issue:

barman delete <server_name> oldest

to remove the oldest backup available in the catalog and reclaim disk space.

Additionally, if backup was taken with the --name <friendly_name> option, you can use the friendly
name in place of the backup ID to refer to that specific backup.

check-backup

Starting with version 2.5, you can check that all required WAL files for the consistency of a full backup
have been correctly archived by barman with the check-backup command:

barman check-backup <server_name> <backup_id>

IMPORTANT: This command is automatically invoked by cron and at the end of a backup
operation. This means that, under normal circumstances, you should never need to execute
it.

In case one or more WAL files from the start to the end of the backup have not been archived yet,
barman will label the backup as WAITING_FOR_WALS. The cron command will continue to check that
missing WAL files are archived, then label the backup as DONE.

In case the first required WAL file is missing at the end of the backup, such backup will be marked
as FAILED. It is therefore important that you verify that WAL archiving (whether via streaming or
archive_command) is properly working before executing a backup operation - especially when backing
up from a standby server.

Copyright © 2010-2023, EnterpriseDB UK Limited 52

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

delete

You can delete a given backup with:

barman delete <server_name> <backup_id>

The delete command accepts any shortcut to identify backups.

keep

If you have a backup which you wish to keep beyond the retention policy of the server then you can
make it an archival backup with:

barman keep <server_name> <backup_id> [--target TARGET, --status, --release]

Possible values for TARGET are:

• full: The backup can always be used to recover to the latest point in time. To achieve this,
Barman will retain all WALs needed to ensure consistency of the backup and all subsequent WALs.

• standalone: The backup can only be used to recover the server to its state at the time the backup
was taken. Barman will only retain the WALs needed to ensure consistency of the backup.

If the --status option is provided then Barman will report the archival status of the backup. This will
either be the recovery target of full or standalone for archival backups or nokeep for backups which
have not been flagged as archival.

If the --release option is provided then Barman will release the keep flag from this backup. This will
remove its archival status and make it available for deletion, either directly or by retention policy.

Once a backup has been flagged as an archival backup, the behaviour of Barman will change as follows:

• Attempts to delete that backup by ID using barman delete will fail.
• Retention policies will never consider that backup as OBSOLETE and therefore barman cron will

never delete that backup.
• The WALs required by that backup will be retained forever. If the specified recovery target is full

then all subsequent WALs will also be retained.

This can be reverted by removing the keep flag with barman keep <server_name> <backup_id>
--release.

WARNING: Once a standalone archival backup is not required by the retention policy of a
server barman cron will remove the WALs between that backup and the begin_wal value
of the next most recent backup. This means that while it is safe to change the target from
full to standalone, it is not safe to change the target from standalone to full because
there is no guarantee the necessary WALs for a recovery to the latest point in time will still
be available.

Copyright © 2010-2023, EnterpriseDB UK Limited 53

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

list-files

You can list the files (base backup and required WAL files) for a given backup with:

barman list-files [--target TARGET_TYPE] <server_name> <backup_id>

With the --target TARGET_TYPE option, it is possible to choose the content of the list for a given
backup.

Possible values for TARGET_TYPE are:

• data: lists the data files
• standalone: lists the base backup files, including required WAL files
• wal: lists all WAL files from the beginning of the base backup to the start of the following one (or

until the end of the log)
• full: same as data + wal

The default value for TARGET_TYPE is standalone.

IMPORTANT: The list-files command facilitates interaction with external tools, and can
therefore be extremely useful to integrate Barman into your archiving procedures.

recover

The recover command is used to recover a whole server after a backup is executed using the backup
command.

This is achieved issuing a command like the following:

barman@backup$ barman recover <server_name> <backup_id> /path/to/recover/dir

IMPORTANT: Do not issue a recover command using a target data directory where a
PostgreSQL instance is running. In that case, remember to stop it before issuing the
recovery. This applies also to tablespace directories.

At the end of the execution of the recovery, the selected backup is recovered locally and the destination
path contains a data directory ready to be used to start a PostgreSQL instance.

IMPORTANT: Running this command as user barman, it will become the database superuser.

The specific ID of a backup can be retrieved using the list-backups command.

Copyright © 2010-2023, EnterpriseDB UK Limited 54

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

IMPORTANT: Barman does not currently keep track of symbolic links inside PGDATA (except
for tablespaces inside pg_tblspc). We encourage system administrators to keep track of
symbolic links and to add them to the disaster recovery plans/procedures in case they need
to be restored in their original location.

The recovery command has several options that modify the command behavior.

Remote recovery

Add the --remote-ssh-command <COMMAND> option to the invocation of the recovery command. Doing
this will allow Barman to execute the copy on a remote server, using the provided command to connect
to the remote host.

NOTE: It is advisable to use the postgres user to perform the recovery on the remote host.

IMPORTANT: Do not issue a recover command using a target data directory where a
PostgreSQL instance is running. In that case, remember to stop it before issuing the
recovery. This applies also to tablespace directories.

Known limitations of the remote recovery are:

• Barman requires at least 4GB of free space in the system temporary directory unless the get-wal
command is specified in the recovery_option parameter in the Barman configuration.

• The SSH connection between Barman and the remote host must use the public key exchange
authentication method

• The remote user must be able to create the directory structure of the backup in the destination
directory.

• There must be enough free space on the remote server to contain the base backup and the WAL
files needed for recovery.

Tablespace remapping

Barman is able to automatically remap one or more tablespaces using the recover command with the
--tablespace option. The option accepts a pair of values as arguments using the NAME:DIRECTORY
format:

• NAME is the identifier of the tablespace
• DIRECTORY is the new destination path for the tablespace

If the destination directory does not exists, Barman will try to create it (assuming you have the required
permissions).

Copyright © 2010-2023, EnterpriseDB UK Limited 55

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Point in time recovery

Barman wraps PostgreSQL’s Point-in-Time Recovery (PITR), allowing you to specify a recovery target,
either as a timestamp, as a restore label, or as a transaction ID.

IMPORTANT: The earliest PITR for a given backup is the end of the base backup itself. If
you want to recover at any point in time between the start and the end of a backup, you
must use the previous backup. From Barman 2.3 you can exit recovery when consistency is
reached by using --target-immediate option.

The recovery target can be specified using one of the following mutually exclusive options:

• --target-time TARGET_TIME: to specify a timestamp
• --target-xid TARGET_XID: to specify a transaction ID
• --target-lsn TARGET_LSN: to specify a Log Sequence Number (LSN) - requires PostgreSQL

10 or higher
• --target-name TARGET_NAME: to specify a named restore point previously created with the

pg_create_restore_point(name) function
• --target-immediate: recovery ends when a consistent state is reached (that is the end of the

base backup process)

IMPORTANT: Recovery target via time, XID and LSN must be subsequent to the end of the
backup. If you want to recover to a point in time between the start and the end of a backup,
you must recover from the previous backup in the catalogue.

You can use the --exclusive option to specify whether to stop immediately before or immediately after
the recovery target.

Barman allows you to specify a target timeline for recovery using the --target-tli option. This can be
set to a numeric timeline ID or one of the special values latest (to recover to the most recent timeline
in the WAL archive) and current (to recover to the timeline which was current when the backup was
taken). If this option is omitted then PostgreSQL versions 12 and above will recover to the latest
timeline and PostgreSQL versions below 12 will recover to the current timeline. You can find more
details about timelines in the PostgreSQL documentation as mentioned in the "Before you start" section.

Barman 2.4 introduces support for --target-action option, accepting the following values:

• shutdown: once recovery target is reached, PostgreSQL is shut down
• pause: once recovery target is reached, PostgreSQL is started in pause state, allowing users to

inspect the instance
• promote: once recovery target is reached, PostgreSQL will exit recovery and is promoted as a

master

IMPORTANT: By default, no target action is defined (for back compatibility). The
--target-action option requires a Point In Time Recovery target to be specified.

Copyright © 2010-2023, EnterpriseDB UK Limited 56

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

For more detailed information on the above settings, please consult the PostgreSQL documentation on
recovery target settings.

Barman 2.4 also adds the --standby-mode option for the recover command which, if specified, properly
configures the recovered instance as a standby by creating a standby.signal file (from PostgreSQL
12) or by adding standby_mode = on to the generated recovery configuration. Further information on
standby mode is available in the PostgreSQL documentation.

Fetching WALs from the Barman server

The barman recover command can optionally configure PostgreSQL to fetch WALs from Barman
during recovery. This is enabled by setting the recovery_options global/server configuration option to
'get-wal' as described in the get-wal section. If recovery_options is not set or is empty then Barman
will instead copy the WALs required for recovery while executing the barman recover command.

The --get-wal and --no-get-wal options can be used to override the behaviour defined by
recovery_options. Use --get-wal with barman recover to enable the fetching of WALs from the
Barman server, alternatively use --no-get-wal to disable it.

Recovering compressed backups

If a backup has been compressed using the backup_compression option then barman recover is able
to uncompress the backup on recovery. This is a multi-step process:

1. The compressed backup files are copied to a staging directory on the local or remote server using
Rsync.

2. The compressed files are uncompressed to the target directory.
3. Config files which need special handling by Barman are copied from the recovery destination,

analysed or edited as required, and copied back to the recovery destination using Rsync.
4. The staging directory for the backup is removed.

Because barman does not know anything about the environment in which it will be deployed it relies on
the recovery_staging_path option in order to choose a suitable location for the staging directory.

If you are using the backup_compression option you must therefore either set recovery_staging_path
in the global/server config or use the --recovery-staging-path option with the barman recover
command. If you do neither of these things and attempt to recover a compressed backup then Barman
will fail rather than try to guess a suitable location.

show-backup

You can retrieve all the available information for a particular backup of a given server with:

barman show-backup <server_name> <backup_id>

The show-backup command accepts any shortcut to identify backups.

Copyright © 2010-2023, EnterpriseDB UK Limited 57

https://www.postgresql.org/docs/current/static/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY-TARGET
https://www.postgresql.org/docs/current/static/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY-TARGET

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Features in detail

In this section we present several Barman features and discuss their applicability and the configuration
required to use them.

This list is not exhaustive, as many scenarios can be created working on the Barman configuration.
Nevertheless, it is useful to discuss common patterns.

Backup features

Incremental backup

Barman implements file-level incremental backup. Incremental backup is a type of full periodic
backup which only saves data changes from the latest full backup available in the catalog for a specific
PostgreSQL server. It must not be confused with differential backup, which is implemented by WAL
continuous archiving.

NOTE: Block level incremental backup will be available in future versions.

IMPORTANT: The reuse_backup option can’t be used with the postgres backup method
at this time.

The main goals of incremental backups in Barman are:

• Reduce the time taken for the full backup process
• Reduce the disk space occupied by several periodic backups (data deduplication)

This feature heavily relies on rsync and hard links, which must therefore be supported by both the
underlying operating system and the file system where the backup data resides.

The main concept is that a subsequent base backup will share those files that have not changed since
the previous backup, leading to relevant savings in disk usage. This is particularly true of VLDB contexts
and of those databases containing a high percentage of read-only historical tables.

Barman implements incremental backup through a global/server option called reuse_backup, that
transparently manages the barman backup command. It accepts three values:

• off: standard full backup (default)
• link: incremental backup, by reusing the last backup for a server and creating a hard link of the

unchanged files (for backup space and time reduction)
• copy: incremental backup, by reusing the last backup for a server and creating a copy of the

unchanged files (just for backup time reduction)

Copyright © 2010-2023, EnterpriseDB UK Limited 58

https://en.wikipedia.org/wiki/Hard_link

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

The most common scenario is to set reuse_backup to link, as follows:

reuse_backup = link

Setting this at global level will automatically enable incremental backup for all your servers.

As a final note, users can override the setting of the reuse_backup option through the --reuse-backup
runtime option for the barman backup command. Similarly, the runtime option accepts three values:
off, link and copy. For example, you can run a one-off incremental backup as follows:

barman backup --reuse-backup=link <server_name>

Limiting bandwidth usage

It is possible to limit the usage of I/O bandwidth through the bandwidth_limit option (global/per server),
by specifying the maximum number of kilobytes per second. By default it is set to 0, meaning no limit.

IMPORTANT: the bandwidth_limit option is supported with the postgres backup method,
but the tablespace_bandwidth_limit option is available only if you use rsync.

In case you have several tablespaces and you prefer to limit the I/O workload of your backup procedures
on one or more tablespaces, you can use the tablespace_bandwidth_limit option (global/per server):

tablespace_bandwidth_limit = tbname:bwlimit[, tbname:bwlimit, ...]

The option accepts a comma separated list of pairs made up of the tablespace name and the bandwidth
limit (in kilobytes per second).

When backing up a server, Barman will try and locate any existing tablespace in the above option. If
found, the specified bandwidth limit will be enforced. If not, the default bandwidth limit for that server will
be applied.

Network Compression

It is possible to reduce the size of transferred data using compression. It can be enabled using the
network_compression option (global/per server):

IMPORTANT: the network_compression option is not available with the postgres backup
method.

network_compression = true|false

Setting this option to true will enable data compression during network transfers (for both backup and
recovery). By default it is set to false.

Copyright © 2010-2023, EnterpriseDB UK Limited 59

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Backup Compression

Barman can use the compression features of pg_basebackup in order to compress the backup data dur-
ing the backup process. This can be enabled using the backup_compression config option (global/per
server):

IMPORTANT: the backup_compression and other options discussed in this section are
not available with the rsync or local-rsync backup methods. Only with postgres backup
method.

Compression algorithms

Setting this option will cause pg_basebackup to compress the backup using the specified compression
algorithm. Currently, supported algorithm in Barman are: gzip, lz4,zstd and none. none compression
algorithm will create an uncompressed archive.

backup_compression = gzip|lz4|zstd|none

Barman requires the CLI utility for the selected compression algorithm to be available on both the
Barman server and the PostgreSQL server. The CLI utility is used to extract the backup label from the
compressed backup and to decompress the backup on the PostgreSQL server during recovery. These
can be installed through system packages named gzip, lz4 and zstd on Debian, Ubuntu, RedHat,
CentOS and SLES systems.

Note: On Ubuntu 18.04 (bionic) the lz4 utility is available in the liblz4-tool pacakge.

Note: zstd version must be 1.4.4 or higher. The system packages for zstd on
Debian 10 (buster), Ubuntu 18.04 (bionic) and SLES 12 install an earlier version -
backup_compression = zstd will not work with these packages.

Note: lz4 and zstd are only available with PostgreSQL version 15 or higher.

IMPORTANT: If you are using backup_compression you must also set recovery_staging_path
so that barman recover is able to recover the compressed backups. See the Recovering
compressed backups section for more information.

Compression workers

This optional parameter allows compression using multiple threads to increase compression speed
(default being 0).

backup_compression_workers = 2

Copyright © 2010-2023, EnterpriseDB UK Limited 60

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Note: This option is only available with zstd compression.

Note: zstd version must be 1.5.0 or higher. Or 1.4.4 or higher compiled with multithreading
option.

Compression level

The compression level can be specified using the backup_compression_level option. This should be
set to an integer value supported by the compression algorithm specified in backup_compression. If
not defined, compression algorithm default value will be used.

none compression only supports backup_compression_level=0.

Note: backup_compression_level available and default values depends on the compres-
sion algorithm used. Please check the compression algorithm documentation for more
details.

Note: On PostgreSQL version prior to 15, gzip support backup_compression_level=0.
It results using default compression level

Compression location

When using Barman with PostgreSQL version 15 or higher it is possible to specify for compression to
happen on the server (i.e. PostgreSQL will compress the backup) or on the client (i.e. pg_basebackup
will compress the backup). This can be achieved using the backup_compression_location option:

IMPORTANT: the backup_compression_location option is only available when running
against PostgreSQL 15 or later.

backup_compression_location = server|client

Using backup_compression_location = server should reduce the network bandwidth required by
the backup at the cost of moving the compression work onto the PostgreSQL server.

When backup_compression_location is set to server then an additional option, backup_compression_format,
can be set to plain in order to have pg_basebackup uncompress the data before writing it to disk:

Compression format

backup_compression_format = plain|tar

If backup_compression_format is unset or has the value tar then the backup will be written to
disk as compressed tarballs. A description of both the plain and tar formats can be found in the
pg_basebackup documentation.

Copyright © 2010-2023, EnterpriseDB UK Limited 61

https://www.postgresql.org/docs/current/app-pgbasebackup.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

IMPORTANT: Barman uses external tools to manage compressed backups. Depending on
the backup_compression and backup_compression_format You may need to install one
or more tools on the Postgres server and the Barman server. The following table will help
you choose according to your configuration.

backup_compression backup_compression_format Postgres server Barman server

gzip plain tar None

gzip tar tar tar

lz4 plain tar, lz4 None

lz4 tar tar, lz4 tar, lz4

zstd plain tar, zstd None

zstd tar tar, zstd tar, zstd

none tar tar tar

Concurrent backup

Normally, during backup operations, Barman uses PostgreSQL native functions pg_start_backup
and pg_stop_backup for concurrent backup.6 This is the recommended way of taking backups for
PostgreSQL 9.6 and above (though note the functions have been renamed to pg_backup_start and
pg_backup_stop in the PostgreSQL 15 beta).

As well as being the recommended backup approach, concurrent backup also allows the following
architecture scenario with Barman: backup from a standby server, using rsync.

By default, backup_options is set to concurrent_backup. If exclusive backup is required for Post-
greSQL servers older than version 15 then users should set backup_options to exclusive_backup.

When backup_options is set to concurrent_backup, Barman activates the concurrent backup mode
for a server and follows these two simple rules:

• ssh_command must point to the destination Postgres server
• conninfo must point to a database on the destination Postgres database.

IMPORTANT: In case of a concurrent backup, currently Barman cannot determine whether
the closing WAL file of a full backup has actually been shipped - opposite of an exclusive
backup where PostgreSQL itself makes sure that the WAL file is correctly archived. Be aware
that the full backup cannot be considered consistent until that WAL file has been received
and archived by Barman. Barman 2.5 introduces a new state, called WAITING_FOR_WALS,
which is managed by the check-backup command (part of the ordinary maintenance job
performed by the cron command). From Barman 2.10, you can use the --wait option with
barman backup command.

6Concurrent backup is a technology that uses the streaming replication protocol (for example, using a tool like
pg_basebackup).

Copyright © 2010-2023, EnterpriseDB UK Limited 62

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Concurrent backup of a standby

If backing up a standby then the following configuration options should point to the standby server:

• conninfo
• streaming_conninfo (when using backup_method = postgres or streaming_archiver =
on)

• ssh_command (when using backup_method = rsync)

The following config option should point to the primary server:

• primary_conninfo

Barman will use primary_conninfo to switch to a new WAL on the primary so that the concurrent
backup against the standby can complete without having to wait for a WAL switch to occur naturally.

NOTE: It is especially important that primary_conninfo is set if the standby is to be backed
up when there is little or no write traffic on the primary.

As of Barman 3.8.0, If primary_conninfo is set, is possible to add for a server a primary_checkpoint_timeout
option, which is the maximum time (in seconds) for Barman to wait for a new WAL file to be produced
before forcing the execution of a checkpoint on the primary. The primary_checkpoint_timeout option
should be set to an amount of seconds greater of the value of the archive_timeout option set on the
primary server.

If primary_conninfo is not set then the backup will still run however it will wait at the stop backup stage
until the current WAL segment on the primary is newer than the latest WAL required by the backup.

Barman currently requires that WAL files and backup data come from the same PostgreSQL server.
In the case that the standby is promoted to primary the backups and WALs will continue to be valid
however you may wish to update the Barman configuration so that it uses the new standby for taking
backups and receiving WALs.

WALs can be obtained from the standby using either WAL streaming or WAL archiving. To use WAL
streaming follow the instructions in the WAL streaming section.

To use WAL archiving from the standby follow the instructions in the WAL archiving via archive_command
section and additionally set archive_mode = always in the PostgreSQL config on the standby server.

NOTE: With PostgreSQL 10 and earlier Barman cannot handle WAL streaming and WAL
archiving being enabled at the same time on a standby. You must therefore disable WAL
archiving if using WAL streaming and vice versa. This is because it is possible for WALs
produced by PostgreSQL 10 and earlier to be logically equivalent but differ at the binary
level, causing Barman to fail to detect that two WALs are identical.

Copyright © 2010-2023, EnterpriseDB UK Limited 63

https://docs.pgbarman.org/barman.5.html#options

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Immediate checkpoint

Before starting a backup, Barman requests a checkpoint, which generates additional workload. Normally
that checkpoint is throttled according to the settings for workload control on the PostgreSQL server,
which means that the backup could be delayed.

This default behaviour can be changed through the immediate_checkpoint configuration global/server
option (set to false by default).

If immediate_checkpoint is set to true, PostgreSQL will not try to limit the workload, and the check-
point will happen at maximum speed, starting the backup as soon as possible.

At any time, you can override the configuration option behaviour, by issuing barman backup with any of
these two options:

• --immediate-checkpoint, which forces an immediate checkpoint;
• --no-immediate-checkpoint, which forces to wait for the checkpoint to happen.

Local backup

DISCLAIMER: This feature is not recommended for production usage, as Barman and
PostgreSQL reside on the same server and are part of the same single point of failure. Some
EnterpriseDB customers have requested to add support for local backup to Barman to be
used under specific circumstances and, most importantly, under the 24/7 production service
delivered by the company. Using this feature currently requires installation from sources,
or to customise the environment for the postgres user in terms of permissions as well as
logging and cron configurations.

Under special circumstances, Barman can be installed on the same server where the PostgreSQL
instance resides, with backup data stored on a separate volume from PGDATA and, where applicable,
tablespaces. Usually, these volumes reside on network storage appliances, with filesystems like NFS.

This architecture is not endorsed by EnterpriseDB. For an enhanced business continuity experience of
PostgreSQL, with better results in terms of RPO and RTO, EnterpriseDB still recommends the shared
nothing architecture with a remote installation of Barman, capable of acting like a witness server for
replication and monitoring purposes.

The only requirement for local backup is that Barman runs with the same user as the PostgreSQL server,
which is normally postgres. Given that the Community packages by default install Barman under the
barman user, this use case requires manual installation procedures that include:

• cron configurations
• log configurations, including logrotate

In order to use local backup for a given server in Barman, you need to set backup_method to
local-rsync. The feature is essentially identical to its rsync equivalent, which relies on SSH instead

Copyright © 2010-2023, EnterpriseDB UK Limited 64

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

and operates remotely. With local-rsync file system copy is performed issuing rsync commands
locally (for this reason it is required that Barman runs with the same user as PostgreSQL).

An excerpt of configuration for local backup for a server named local-pg13 is:

[local-pg13]
description = "Local PostgreSQL 13"
backup_method = local-rsync
...

Archiving features

WAL compression

The barman cron command will compress WAL files if the compression option is set in the configuration
file. This option allows five values:

• bzip2: for Bzip2 compression (requires the bzip2 utility)
• gzip: for Gzip compression (requires the gzip utility)
• pybzip2: for Bzip2 compression (uses Python’s internal compression module)
• pygzip: for Gzip compression (uses Python’s internal compression module)
• pigz: for Pigz compression (requires the pigz utility)
• custom: for custom compression, which requires you to set the following options as well: -
custom_compression_filter: a compression filter - custom_decompression_filter: a de-
compression filter - custom_compression_magic: a hex string to identify a custom compressed
wal file

NOTE: All methods but pybzip2 and pygzip require barman archive-wal to fork a new
process.

Synchronous WAL streaming

Barman can also reduce the Recovery Point Objective to zero, by collecting the transaction WAL files
like a synchronous standby server would.

To configure such a scenario, the Barman server must be configured to archive WALs via the streaming
connection, and the receive-wal process should figure as a synchronous standby of the PostgreSQL
server.

First of all, you need to retrieve the application name of the Barman receive-wal process with the
show-servers command:

barman@backup$ barman show-servers pg|grep streaming_archiver_name
streaming_archiver_name: barman_receive_wal

Copyright © 2010-2023, EnterpriseDB UK Limited 65

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Then the application name should be added to the postgresql.conf file as a synchronous standby:

synchronous_standby_names = 'barman_receive_wal'

IMPORTANT: this is only an example of configuration, to show you that Barman is eligible
to be a synchronous standby node. We are not suggesting to use ONLY Barman. You can
read "Synchronous Replication" from the PostgreSQL documentation for further information
on this topic.

The PostgreSQL server needs to be restarted for the configuration to be reloaded.

If the server has been configured correctly, the replication-status command should show the
receive_wal process as a synchronous streaming client:

[root@backup ~]# barman replication-status pg
Status of streaming clients for server 'pg':
Current xlog location on master: 0/9000098
Number of streaming clients: 1

1. #1 Sync WAL streamer
Application name: barman_receive_wal
Sync stage : 3/3 Remote write
Communication : TCP/IP
IP Address : 139.59.135.32 / Port: 58262 / Host: -
User name : streaming_barman
Current state : streaming (sync)
Replication slot: barman
WAL sender PID : 2501
Started at : 2016-09-16 10:33:01.725883+00:00
Sent location : 0/9000098 (diff: 0 B)
Write location : 0/9000098 (diff: 0 B)
Flush location : 0/9000098 (diff: 0 B)

Catalog management features

Minimum redundancy safety

You can define the minimum number of periodic backups for a PostgreSQL server, using the global/per
server configuration option called minimum_redundancy, by default set to 0.

By setting this value to any number greater than 0, Barman makes sure that at any time you will have at
least that number of backups in a server catalog.

This will protect you from accidental barman delete operations.

Copyright © 2010-2023, EnterpriseDB UK Limited 66

https://www.postgresql.org/docs/current/static/warm-standby.html#SYNCHRONOUS-REPLICATION

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

IMPORTANT: Make sure that your retention policy settings do not collide with minimum
redundancy requirements. Regularly check Barman’s log for messages on this topic.

Retention policies

Barman supports retention policies for backups.

A backup retention policy is a user-defined policy that determines how long backups and related archive
logs (Write Ahead Log segments) need to be retained for recovery procedures.

Based on the user’s request, Barman retains the periodic backups required to satisfy the current retention
policy and any archived WAL files required for the complete recovery of those backups.

Barman users can define a retention policy in terms of backup redundancy (how many periodic
backups) or a recovery window (how long).

Retention policy based on redundancy In a redundancy based retention policy, the user determines
how many periodic backups to keep. A redundancy-based retention policy is contrasted with
retention policies that use a recovery window.

Retention policy based on recovery window A recovery window is one type of Barman backup reten-
tion policy, in which the DBA specifies a period of time and Barman ensures retention of backups
and/or archived WAL files required for point-in-time recovery to any time during the recovery
window. The interval always ends with the current time and extends back in time for the number
of days specified by the user. For example, if the retention policy is set for a recovery window of
seven days, and the current time is 9:30 AM on Friday, Barman retains the backups required to
allow point-in-time recovery back to 9:30 AM on the previous Friday.

Scope

Retention policies can be defined for:

• PostgreSQL periodic base backups: through the retention_policy configuration option
• Archive logs, for Point-In-Time-Recovery: through the wal_retention_policy configuration

option

IMPORTANT: In a temporal dimension, archive logs must be included in the time window of
periodic backups.

There are two typical use cases here: full or partial point-in-time recovery.

Full point in time recovery scenario: Base backups and archive logs share the same retention policy,
allowing you to recover at any point in time from the first available backup.

Copyright © 2010-2023, EnterpriseDB UK Limited 67

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Partial point in time recovery scenario: Base backup retention policy is wider than that of archive
logs, for example allowing users to keep full, weekly backups of the last 6 months, but archive logs
for the last 4 weeks (granting to recover at any point in time starting from the last 4 periodic weekly
backups).

IMPORTANT: Currently, Barman implements only the full point in time recovery scenario,
by constraining the wal_retention_policy option to main.

How they work

Retention policies in Barman can be:

• automated: enforced by barman cron
• manual: Barman simply reports obsolete backups and allows you to delete them

IMPORTANT: Currently Barman does not implement manual enforcement. This feature will
be available in future versions.

Configuration and syntax

Retention policies can be defined through the following configuration options:

• retention_policy: for base backup retention
• wal_retention_policy: for archive logs retention
• retention_policy_mode: can only be set to auto (retention policies are automatically enforced

by the barman cron command)

These configuration options can be defined both at a global level and a server level, allowing users
maximum flexibility on a multi-server environment.

Syntax for retention_policy

The general syntax for a base backup retention policy through retention_policy is the following:

retention_policy = {REDUNDANCY value | RECOVERY WINDOW OF value {DAYS | WEEKS | MONTHS}}

Where:

• syntax is case insensitive
• value is an integer and is > 0
• in case of redundancy retention policy: - value must be greater than or equal to the server

minimum redundancy level (if that value is not assigned, a warning is generated) - the first valid
backup is the value-th backup in a reverse ordered time series

Copyright © 2010-2023, EnterpriseDB UK Limited 68

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• in case of recovery window policy: - the point of recoverability is: current time - window - the first
valid backup is the first available backup before the point of recoverability; its value in a reverse
ordered time series must be greater than or equal to the server minimum redundancy level (if it is
not assigned to that value and a warning is generated)

By default, retention_policy is empty (no retention enforced).

Syntax for wal_retention_policy

Currently, the only allowed value for wal_retention_policy is the special value main, that maps the
retention policy of archive logs to that of base backups.

Hook scripts

Barman allows a database administrator to run hook scripts on these two events:

• before and after a backup
• before and after the deletion of a backup
• before and after a WAL file is archived
• before and after a WAL file is deleted

There are two types of hook scripts that Barman can manage:

• standard hook scripts
• retry hook scripts

The only difference between these two types of hook scripts is that Barman executes a standard hook
script only once, without checking its return code, whereas a retry hook script may be executed more
than once, depending on its return code.

Specifically, when executing a retry hook script, Barman checks the return code and retries indefinitely
until the script returns either SUCCESS (with standard return code 0), or ABORT_CONTINUE (return code
62), or ABORT_STOP (return code 63). Barman treats any other return code as a transient failure to be
retried. Users are given more power: a hook script can control its workflow by specifying whether a
failure is transient. Also, in case of a ’pre’ hook script, by returning ABORT_STOP, users can request
Barman to interrupt the main operation with a failure.

Hook scripts are executed in the following order:

1. The standard ’pre’ hook script (if present)
2. The retry ’pre’ hook script (if present)
3. The actual event (i.e. backup operation, or WAL archiving), if retry ’pre’ hook script was not aborted

with ABORT_STOP

Copyright © 2010-2023, EnterpriseDB UK Limited 69

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

4. The retry ’post’ hook script (if present)
5. The standard ’post’ hook script (if present)

The output generated by any hook script is written in the log file of Barman.

NOTE: Currently, ABORT_STOP is ignored by retry ’post’ hook scripts. In these cases, apart
from logging an additional warning, ABORT_STOP will behave like ABORT_CONTINUE.

Backup scripts

These scripts can be configured with the following global configuration options (which can be overridden
on a per server basis):

• pre_backup_script: hook script executed before a base backup, only once, with no check on
the exit code

• pre_backup_retry_script: retry hook script executed before a base backup, repeatedly until
success or abort

• post_backup_retry_script: retry hook script executed after a base backup, repeatedly until
success or abort

• post_backup_script: hook script executed after a base backup, only once, with no check on
the exit code

The script definition is passed to a shell and can return any exit code. Only in case of a retry script,
Barman checks the return code (see the hook script section).

The shell environment will contain the following variables:

• BARMAN_BACKUP_DIR: backup destination directory
• BARMAN_BACKUP_ID: ID of the backup
• BARMAN_CONFIGURATION: configuration file used by Barman
• BARMAN_ERROR: error message, if any (only for the post phase)
• BARMAN_PHASE: phase of the script, either pre or post
• BARMAN_PREVIOUS_ID: ID of the previous backup (if present)
• BARMAN_RETRY: 1 if it is a retry script, 0 if not
• BARMAN_SERVER: name of the server
• BARMAN_STATUS: status of the backup
• BARMAN_VERSION: version of Barman

Backup delete scripts

Version 2.4 introduces pre and post backup delete scripts.

As previous scripts, backup delete scripts can be configured within global configuration options, and it is
possible to override them on a per server basis:

Copyright © 2010-2023, EnterpriseDB UK Limited 70

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• pre_delete_script: hook script launched before the deletion of a backup, only once, with no
check on the exit code

• pre_delete_retry_script: retry hook script executed before the deletion of a backup, repeat-
edly until success or abort

• post_delete_retry_script: retry hook script executed after the deletion of a backup, repeat-
edly until success or abort

• post_delete_script: hook script launched after the deletion of a backup, only once, with no
check on the exit code

The script is executed through a shell and can return any exit code. Only in case of a retry script, Barman
checks the return code (see the upper section).

Delete scripts uses the same environmental variables of a backup script, plus:

• BARMAN_NEXT_ID: ID of the next backup (if present)

WAL archive scripts

Similar to backup scripts, archive scripts can be configured with global configuration options (which can
be overridden on a per server basis):

• pre_archive_script: hook script executed before a WAL file is archived by maintenance (usually
barman cron), only once, with no check on the exit code

• pre_archive_retry_script: retry hook script executed before a WAL file is archived by mainte-
nance (usually barman cron), repeatedly until it is successful or aborted

• post_archive_retry_script: retry hook script executed after a WAL file is archived by mainte-
nance, repeatedly until it is successful or aborted

• post_archive_script: hook script executed after a WAL file is archived by maintenance, only
once, with no check on the exit code

The script is executed through a shell and can return any exit code. Only in case of a retry script, Barman
checks the return code (see the upper section).

Archive scripts share with backup scripts some environmental variables:

• BARMAN_CONFIGURATION: configuration file used by Barman
• BARMAN_ERROR: error message, if any (only for the post phase)
• BARMAN_PHASE: phase of the script, either pre or post
• BARMAN_SERVER: name of the server

Following variables are specific to archive scripts:

• BARMAN_SEGMENT: name of the WAL file

Copyright © 2010-2023, EnterpriseDB UK Limited 71

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• BARMAN_FILE: full path of the WAL file
• BARMAN_SIZE: size of the WAL file
• BARMAN_TIMESTAMP: WAL file timestamp
• BARMAN_COMPRESSION: type of compression used for the WAL file

WAL delete scripts

Version 2.4 introduces pre and post WAL delete scripts.

Similarly to the other hook scripts, wal delete scripts can be configured with global configuration options,
and is possible to override them on a per server basis:

• pre_wal_delete_script: hook script executed before the deletion of a WAL file
• pre_wal_delete_retry_script: retry hook script executed before the deletion of a WAL file,

repeatedly until it is successful or aborted
• post_wal_delete_retry_script: retry hook script executed after the deletion of a WAL file,

repeatedly until it is successful or aborted
• post_wal_delete_script: hook script executed after the deletion of a WAL file

The script is executed through a shell and can return any exit code. Only in case of a retry script, Barman
checks the return code (see the upper section).

WAL delete scripts use the same environmental variables as WAL archive scripts.

Recovery scripts

Version 2.4 introduces pre and post recovery scripts.

As previous scripts, recovery scripts can be configured within global configuration options, and is possible
to override them on a per server basis:

• pre_recovery_script: hook script launched before the recovery of a backup, only once, with no
check on the exit code

• pre_recovery_retry_script: retry hook script executed before the recovery of a backup,
repeatedly until success or abort

• post_recovery_retry_script: retry hook script executed after the recovery of a backup, re-
peatedly until success or abort

• post_recovery_script: hook script launched after the recovery of a backup, only once, with no
check on the exit code

The script is executed through a shell and can return any exit code. Only in case of a retry script, Barman
checks the return code (see the upper section).

Recovery scripts uses the same environmental variables of a backup script, plus:

Copyright © 2010-2023, EnterpriseDB UK Limited 72

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• BARMAN_DESTINATION_DIRECTORY: the directory where the new instance is recovered

• BARMAN_TABLESPACES: tablespace relocation map (JSON, if present)

• BARMAN_REMOTE_COMMAND: secure shell command used by the recovery (if present)

• BARMAN_RECOVER_OPTIONS: recovery additional options (JSON, if present)

Customization

Lock file directory

Barman allows you to specify a directory for lock files through the barman_lock_directory global
option.

Lock files are used to coordinate concurrent work at global and server level (for example, cron operations,
backup operations, access to the WAL archive, and so on.).

By default (for backward compatibility reasons), barman_lock_directory is set to barman_home.

TIP: Users are encouraged to use a directory in a volatile partition, such as the one dedicated
to run-time variable data (e.g. /var/run/barman).

Binary paths

As of version 1.6.0, Barman allows users to specify one or more directories where Barman looks for
executable files, using the global/server option path_prefix.

If a path_prefix is provided, it must contain a list of one or more directories separated by colon. Barman
will search inside these directories first, then in those specified by the PATH environment variable.

By default the path_prefix option is empty.

Integration with cluster management systems

Barman has been designed for integration with standby servers (with streaming replication or traditional
file based log shipping) and high availability tools like repmgr.

From an architectural point of view, PostgreSQL must be configured to archive WAL files directly to the
Barman server. Barman, thanks to the get-wal framework, can also be used as a WAL hub. For this
purpose, you can use the barman-wal-restore script, part of the barman-cli package, with all your
standby servers.

The replication-status command allows you to get information about any streaming client attached
to the managed server, in particular hot standby servers and WAL streamers.

Copyright © 2010-2023, EnterpriseDB UK Limited 73

https://www.repmgr.org/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Parallel jobs

By default, Barman uses only one worker for file copy during both backup and recover operations.
Starting from version 2.2, it is possible to customize the number of workers that will perform file copy. In
this case, the files to be copied will be equally distributed among all parallel workers.

It can be configured in global and server scopes, adding these in the corresponding configuration file:

parallel_jobs = n

where n is the desired number of parallel workers to be used in file copy operations. The default value is
1.

In any case, users can override this value at run-time when executing backup or recover commands.
For example, you can use 4 parallel workers as follows:

barman backup --jobs 4 server1

Or, alternatively:

barman backup --j 4 server1

Please note that this parallel jobs feature is only available for servers configured through rsync/SSH. For
servers configured through streaming protocol, Barman will rely on pg_basebackup which is currently
limited to only one worker.

Parallel jobs and sshd MaxStartups

Barman limits the rate at which parallel Rsync jobs are started in order to avoid exceeding the maximum
number of concurrent unauthenticated connections allowed by the SSH server. This maximum is defined
by the sshd parameter MaxStartups - if more than MaxStartups connections have been created but
not yet authenticated then the SSH server may drop some or all of the connections resulting in a failed
backup or recovery.

The default value of sshd MaxStartups on most platforms is 10. Barman therefore starts parallel jobs in
batches of 10 and does not start more than one batch of jobs within a one second time period. This
yields an effective rate limit of 10 jobs per second.

This limit can be changed using the following two configuration options:

• parallel_jobs_start_batch_size: The maximum number of parallel jobs to start in a single
batch.

• parallel_jobs_start_batch_period: The time period in seconds over which a single batch of
jobs will be started.

Copyright © 2010-2023, EnterpriseDB UK Limited 74

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

For example, to ensure no more than five new Rsync jobs will be created within any two second time
period:

parallel_jobs_start_batch_size = 5
parallel_jobs_start_batch_period = 2

The configuration options can be overridden using the following arguments with both barman backup
and barman recover commands:

• --jobs-start-batch-size
• --jobs-start-batch-period

Geographical redundancy

It is possible to set up cascading backup architectures with Barman, where the source of a backup
server is a Barman installation rather than a PostgreSQL server.

This feature allows users to transparently keep geographically distributed copies of PostgreSQL backups.

In Barman jargon, a backup server that is connected to a Barman installation rather than a PostgreSQL
server is defined passive node. A passive node is configured through the primary_ssh_command
option, available both at global (for a full replica of a primary Barman installation) and server level (for
mixed scenarios, having both direct and passive servers).

Sync information

The barman sync-info command is used to collect information regarding the current status of a
Barman server that is useful for synchronisation purposes. The available syntax is the following:

barman sync-info [--primary] <server_name> [<last_wal> [<last_position>]]

The command returns a JSON object containing:

• A map with all the backups having status DONE for that server
• A list with all the archived WAL files
• The configuration for the server
• The last read position (in the xlog database file)
• the name of the last read WAL file

The JSON response contains all the required information for the synchronisation between the master
and a passive node.

If --primary is specified, the command is executed on the defined primary node, rather than locally.

Copyright © 2010-2023, EnterpriseDB UK Limited 75

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Configuration

Configuring a server as passive node is a quick operation. Simply add to the server configuration the
following option:

primary_ssh_command = ssh barman@primary_barman

This option specifies the SSH connection parameters to the primary server, identifying the source of the
backup data for the passive server.

If you are invoking barman with the -c/--config option and you want to use the same option when the
passive node invokes barman on the primary node then add the following option:

forward_config_path = true

Node synchronisation

When a node is marked as passive it is treated in a special way by Barman:

• it is excluded from standard maintenance operations
• direct operations to PostgreSQL are forbidden, including barman backup

Synchronisation between a passive server and its primary is automatically managed by barman cron
which will transparently invoke:

1. barman sync-info --primary, in order to collect synchronisation information
2. barman sync-backup, in order to create a local copy of every backup that is available on the

primary node
3. barman sync-wals, in order to copy locally all the WAL files available on the primary node

Manual synchronisation

Although barman cron automatically manages passive/primary node synchronisation, it is possible to
manually trigger synchronisation of a backup through:

barman sync-backup <server_name> <backup_id>

Launching sync-backup barman will use the primary_ssh_command to connect to the master server,
then if the backup is present on the remote machine, will begin to copy all the files using rsync. Only one
single synchronisation process per backup is allowed.

WAL files also can be synchronised, through:

barman sync-wals <server_name>

Copyright © 2010-2023, EnterpriseDB UK Limited 76

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Cloud snapshot backups

Snapshot backups are backups which consist of one or more snapshots of cloud storage volumes.

A snapshot backup can be taken for a suitable PostgreSQL server using either of the following commands:

• barman backup with the required configuration operations for snapshots if a Barman server is
being used to store WALs and backup metadata.

• barman-cloud-backup with the required command line arguments if there is no Barman server
and instead a cloud object store is being used for WALs and backup metadata.

Snapshot backup details

The high level process for taking a snapshot backup is as follows:

1. Barman carries out a series of pre-flight checks to validate the snapshot options, instance and
disks.

2. Barman starts a backup using the PostgreSQL backup API.
3. The cloud provider API is used to trigger a snapshot for each specified disk. Barman will wait

until the snapshot has reached the required state for guaranteeing application consistency before
moving on to the next disk.

4. Additional provider-specific data, such as the device name for each disk, is saved to the backup
metadata.

5. The mount point and mount options for each disk are saved in the backup metadata.
6. Barman stops the backup using the PostgreSQL backup API.

The cloud provider API calls are made on the node where the backup command runs; this will be either the
Barman server (when barman backup is used) or the PostgreSQL server (when barman-cloud-backup
is used).

The following pre-flight checks are carried out before each backup and also when barman check runs
against a server configured for snapshot backups:

• The compute instance specified by snapshot_instance and any provider-specific arguments
exists.

• The disks specified by snapshot_disks exist.
• The disks specified by snapshot_disks are attached to snapshot_instance.
• The disks specified by snapshot_disks are mounted on snapshot_instance.

Recovering from a snapshot backup

Barman will not currently perform a fully automated recovery from snapshot backups. This is because
recovery from snapshots requires the provision and management of new infrastructure which is something
better handled by dedicated infrastructure-as-code solutions such as Terraform.

Copyright © 2010-2023, EnterpriseDB UK Limited 77

https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-LOWLEVEL-BASE-BACKUP

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

However, the barman recover command can still be used to validate the snapshot recovery instance,
carry out post-recovery tasks such as checking the PostgreSQL configuration for unsafe options and set
any required PITR options. It will also copy the backup_label file into place (since the backup label is
not stored in any of the volume snapshots) and copy across any required WALs (unless the --get-wal
recovery option is used, in which case it will configure the PostgreSQL restore_command to fetch the
WALs).

If restoring a backup made with barman-cloud-backup then the more limited barman-cloud-restore
command should be used instead of barman recover.

Recovery from a snapshot backup consists of the following steps:

1. Provision a new disk for each snapshot taken during the backup.
2. Provision a compute instance where each disk provisioned in step 1 is attached and mounted

according to the backup metadata.
3. Use the barman recover or barman-cloud-restore command to validate and finalize the recovery.

Steps 1 and 2 are best handled by an existing infrastructure-as-code system however it is also possible
to carry these steps out manually or using a custom script.

The following resources may be helpful when carrying out these steps:

• An example recovery script for GCP.
• An example runbook for Azure.

The above resources make assumptions about the backup/recovery environment and should not be
considered suitable for production use without further customization.

Once the recovery instance is provisioned and disks cloned from the backup snapshots are attached
and mounted, run barman recover with the following additional arguments:

• --remote-ssh-command: The ssh command required to log in to the recovery instance.
• --snapshot-recovery-instance: The name of the recovery instance as required by the cloud

provider.
• Any additional arguments specific to the snapshot provider.

For example:

barman recover SERVER_NAME BACKUP_ID REMOTE_RECOVERY_DIRECTORY \
--remote-ssh-command 'ssh USER@HOST' \
--snapshot-recovery-instance INSTANCE_NAME

Barman will automatically detect that the backup is a snapshot backup and check that the attached disks
were cloned from the snapshots for that backup. Barman will then prepare PostgreSQL for recovery
by copying the backup label and WALs into place and setting any required recovery options in the
PostgreSQL configuration.

The following additional barman recover arguments are available with the gcp provider:

Copyright © 2010-2023, EnterpriseDB UK Limited 78

https://github.com/EnterpriseDB/barman/blob/master/scripts/prepare_snapshot_recovery.py
https://github.com/EnterpriseDB/barman/blob/master/doc/runbooks/snapshot_recovery_azure.md

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

• --gcp-zone: The name of the availability zone in which the recovery instance is located. If not
provided then Barman will use the value of gcp_zone set in the server config.

The following additional barman recover arguments are available with the azure provider:

• --azure-resource-group: The resource group to which the recovery instance belongs. If not
provided then Barman will use the value of azure_resource_group set in the server config.

The following additional barman recover arguments are available with the aws provider:

• --aws-region: The AWS region in which the recovery instance is located. If not provided then
Barman will use the value of aws_region set in the server config.

Note the following barman recover arguments / config variables are unavailable when recovering
snapshot backups:

Command argument Config variable .

--bwlimit bandwidth_limit

--jobs parallel_jobs

--recovery-staging-path recovery_staging_path

--tablespace N/A

Backup metadata for snapshot backups

Whether the recovery disks and instance are provisioned via infrastructure-as-code, ad-hoc automation
or manually, it will be necessary to query Barman to find the snapshots required for a given backup. This
can be achieved using barman show-backup which will provide details for each snapshot in the backup.
For example:

$ barman show-backup primary 20230123T131430
Backup 20230123T131430:
Server Name : primary
System Id : 7190784995399903779
Status : DONE
PostgreSQL Version : 140006
PGDATA directory : /opt/postgres/data

Snapshot information:
provider : gcp
project : project_id

Copyright © 2010-2023, EnterpriseDB UK Limited 79

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

device_name : pgdata
snapshot_name : barman-av-ubuntu20-primary-pgdata-20230123t131430
snapshot_project : project_id
Mount point : /opt/postgres
Mount options : rw,noatime

device_name : tbs1
snapshot_name : barman-av-ubuntu20-primary-tbs1-20230123t131430
snapshot_project : project_id
Mount point : /opt/postgres/tablespaces/tbs1
Mount options : rw,noatime

The the --format=json option can be used when integrating with external tooling, e.g.:

$ barman --format=json show-backup primary 20230123T131430
...
"snapshots_info": {
"provider": "gcp",
"provider_info": {
"project": "project_id"

},
"snapshots": [
{
"mount": {
"mount_options": "rw,noatime",
"mount_point": "/opt/postgres"

},
"provider": {
"device_name": "pgdata",
"snapshot_name": "barman-av-ubuntu20-primary-pgdata-20230123t131430",
"snapshot_project": "project_id"

}
},
{
"mount": {
"mount_options": "rw,noatime",
"mount_point": "/opt/postgres/tablespaces/tbs1"

},
"provider": {
"device_name": "tbs1",
"snapshot_name": "barman-av-ubuntu20-primary-tbs1-20230123t131430",
"snapshot_project": "project_id",

}

Copyright © 2010-2023, EnterpriseDB UK Limited 80

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

}
]

}
...

For backups taken with barman-cloud-backup there is an analogous barman-cloud-backup-show
command which can be used along with barman-cloud-backup-list to query the backup metadata in
the cloud object store.

The metadata available in snapshots_info/provider_info and snapshots_info/snapshots/*/provider
varies by cloud provider as explained in the following sections.

GCP provider-specific metadata

The following fields are available in snapshots_info/provider_info:

• project: The GCP project ID of the project which owns the resources involved in backup and
recovery.

The following fields are available in snapshots_info/snapshots/*/provider:

• device_name: The short device name with which the source disk for the snapshot was attached
to the backup VM at the time of the backup.

• snapshot_name: The name of the snapshot.
• snapshot_project: The GCP project ID which owns the snapshot.

Azure provider-specific metadata

The following fields are available in snapshots_info/provider_info:

• subscription_id: The Azure subscription ID which owns the resources involved in backup and
recovery.

• resource_group: The Azure resource group to which the resources involved in the backup
belong.

The following fields are available in snapshots_info/snapshots/*/provider:

• location: The Azure location of the disk from which the snapshot was taken.
• lun: The LUN identifying the disk from which the snapshot was taken at the time of the backup.
• snapshot_name: The name of the snapshot.

Copyright © 2010-2023, EnterpriseDB UK Limited 81

https://docs.pgbarman.org/release/latest/barman-cloud-backup-show.1.html

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

AWS provider-specific metadata

The following fields are available in snapshots_info/provider_info:

• account_id: The ID of the AWS account which owns the resources used to make the backup.
• region: The AWS region in which the resources involved in backup are located.

The following fields are available in snapshots_info/snapshots/*/provider:

• device_name: The device to which the source disk was mapped on the backup VM at the time of
the backup.

• snapshot_id: The ID of the snapshot as assigned by AWS.
• snapshot_name: The name of the snapshot.

Copyright © 2010-2023, EnterpriseDB UK Limited 82

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Barman client utilities (barman-cli)

Formerly a separate open-source project, barman-cli has been merged into Barman’s core since
version 2.8, and is distributed as an RPM/Debian package. barman-cli contains a set of recommended
client utilities to be installed alongside the PostgreSQL server:

• barman-wal-archive: archiving script to be used as archive_command as described in the
"WAL archiving via barman-wal-archive" section;

• barman-wal-restore: WAL restore script to be used as part of the restore_command recovery
option on standby and recovery servers, as described in the "get-wal" section above;

For more detailed information, please refer to the specific man pages or the --help option.

Installation

Barman client utilities are normally installed where PostgreSQL is installed. Our recommendation is to
install the barman-cli package on every PostgreSQL server, being that primary or standby.

Please refer to the main "Installation" section to install the repositories.

To install the package on RedHat/CentOS system, as root type:

yum install barman-cli

On Debian/Ubuntu, as root user type:

apt-get install barman-cli

Barman client utilities for the Cloud (barman-cli-cloud)

Barman client utilities have been extended to support object storage integration and enhance disaster
recovery capabilities of your PostgreSQL databases by relaying WAL files and backups to a supported
cloud provider.

Supported cloud providers are:

• AWS S3 (or any S3 compatible object store)
• Azure Blob Storage
• Google Cloud Storage (Rest API)

Copyright © 2010-2023, EnterpriseDB UK Limited 83

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

These utilities are distributed in the barman-cli-cloud RPM/Debian package, and can be installed
alongside the PostgreSQL server:

• barman-cloud-wal-archive: archiving script to be used as archive_command to directly ship
WAL files to cloud storage, bypassing the Barman server; alternatively, as a hook script for WAL
archiving (pre_archive_retry_script);

• barman-cloud-wal-restore: script to be used as restore_command to fetch WAL files from
cloud storage, bypassing the Barman server, and store them directly in the PostgreSQL standby;

• barman-cloud-backup: backup script to be used to take a local backup directly on the PostgreSQL
server and to ship it to a supported cloud provider, bypassing the Barman server; alternatively, as
a hook script for copying barman backups to the cloud (post_backup_retry_script)

• barman-cloud-backup-delete: script to be used to delete one or more backups taken with
barman-cloud-backup from cloud storage and remove associated WALs;

• barman-cloud-backup-keep: script to be used to flag backups in cloud storage as archival
backups - such backups will be kept forever regardless of any retention policies applied;

• barman-cloud-backup-list: script to be used to list the content of Barman backups taken with
barman-cloud-backup from cloud storage;

• barman-cloud-backup-show: script to be used to display the metadata for a Barman backup
taken with barman-cloud-backup;

• barman-cloud-restore: script to be used to restore a backup directly taken with
barman-cloud-backup from cloud storage;

These commands require the appropriate library for the cloud provider you wish to use:

• AWS S3: boto3
• Azure Blob Storage: azure-storage-blob and (optionally) azure-identity
• Google Cloud Storage: google-cloud-storage

For information on how to setup credentials for the aws-s3 cloud provider please refer to the "Credentials"
section in Boto 3 documentation.

For credentials for the azure-blob-storage cloud provider see the "Environment variables for authorization
parameters" section in the Azure documentation. The following environment variables are supported:
AZURE_STORAGE_CONNECTION_STRING, AZURE_STORAGE_KEY and AZURE_STORAGE_SAS_TOKEN. You
can also use the --credential option to specify either azure-cli or managed-identity credentials
in order to authenticate via Azure Active Directory.

Installation

Barman client utilities for the Cloud need to be installed on those PostgreSQL servers that you want to
direcly backup to a cloud provider, bypassing Barman.

In case you want to use barman-cloud-backup and/or barman-cloud-wal-archive as hook scripts,
you can install the barman-cli-cloud package on the Barman server also.

Copyright © 2010-2023, EnterpriseDB UK Limited 84

https://github.com/boto/boto3
https://docs.microsoft.com/en-us/python/api/azure-storage-blob/?view=azure-python
https://docs.microsoft.com/en-us/python/api/azure-identity/?view=azure-python
https://cloud.google.com/storage/docs/reference/libraries
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.microsoft.com/en-us/azure/storage/blobs/authorize-data-operations-cli#set-environment-variables-for-authorization-parameters
https://docs.microsoft.com/en-us/azure/storage/blobs/authorize-data-operations-cli#set-environment-variables-for-authorization-parameters

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Please refer to the main "Installation" section to install the repositories.

To install the package on RedHat/CentOS system, as root type:

yum install barman-cli-cloud

On Debian/Ubuntu, as root user type:

apt-get install barman-cli-cloud

barman-cloud hook scripts

Install the barman-cli-cloud package on the Barman server as described above.

It is possible to use barman-cloud-backup as a post backup script for the following Barman backup
flavours:

• Backups taken with backup_method = rsync.
• Backups taken with backup_method = postgres where backup_compression is not used.

To do so, add the following to a server configuration in Barman:

post_backup_retry_script = 'barman-cloud-backup [*OPTIONS*] *DESTINATION_URL* ${BARMAN_SERVER}

WARNING: When running as a hook script barman-cloud-backup requires that the status of
the backup is DONE and it will fail if the backup has any other status. For this reason it is
recommended backups are run with the -w / --wait option so that the hook script is not
executed while a backup has status WAITING_FOR_WALS.

Configure barman-cloud-wal-archive as a pre WAL archive script by adding the following to the
Barman configuration for a PostgreSQL server:

pre_archive_retry_script = 'barman-cloud-wal-archive [*OPTIONS*] *DESTINATION_URL* ${BARMAN_SERVER}'

Selecting a cloud provider

Use the --cloud-provider option to choose the cloud provider for your backups and WALs. This can
be set to one of the following:

• aws-s3 [DEFAULT]: AWS S3 or S3-compatible object store.
• azure-blob-storage: Azure Blob Storage service.
• google-cloud-storage: Google Cloud Storage service.

Copyright © 2010-2023, EnterpriseDB UK Limited 85

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Specificity by provider

Google Cloud Storage

set up

It will need google_storage_client dependency:

pip3 install google-cloud-storage

To set credentials:

• Create a service account And create a service account key.

• Set bucket access rights:

We suggest to give Storage Admin Role to the service account on the bucket.

• When using barman_cloud, If the bucket does not exist, it will be created. Default options will be
used to create the bucket. If you need the bucket to have specific options (region, storage class,
labels), it is advised to create and set the bucket to match all you needs.

• Set env variable GOOGLE_APPLICATION_CREDENTIALS to the service account key file path.

If running barman cloud from postgres (archive_command or restore_command), do not forget to
set GOOGLE_APPLICATION_CREDENTIALS in postgres environment file.

Usage

Some details are specific to all barman cloud commands: * Select Google Cloud Stor-
age--cloud-provider=google-cloud-storage * SOURCE_URL support both gs and https format. ex:
gs://BUCKET_NAME/path or https://console.cloud.google.com/storage/browser/BUCKET_NAME/path

barman-cloud and snapshot backups

The barman-cloud client utilities can also be used to create and manage backups using cloud snapshots
as an alternative to uploading to a cloud object store.

When using barman-cloud in this manner the backup data is stored by the cloud provider as volume
snapshots and the WALs and backup metadata, including the backup_label, are stored in cloud object
storage.

The prerequisites are the same as for snapshot backups using Barman with the added requirement that
the credentials used by barman-cloud must be able to perform read/write/update operations against an
object store.

Copyright © 2010-2023, EnterpriseDB UK Limited 86

https://cloud.google.com/docs/authentication/getting-started#setting_the_environment_variable
https://cloud.google.com/storage/docs/access-control/iam-roles
https://cloud.google.com/docs/authentication/getting-started#setting_the_environment_variable

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

barman-cloud-backup for snapshots

To take a snapshot backup with barman-cloud, use barman-cloud-backup with the following additional
arguments:

• --snapshot-disk (can be used multiple times for multiple disks)
• --snapshot-instance

If the --cloud-provider is google-cloud-storage then the following arguments are also required:

• --gcp-project
• --gcp-zone

If the --cloud-provider is azure-blob-storage then the following arguments are also required:

• --azure-subscription-id
• --azure-resource-group

If the --cloud-provider is aws-s3 then the following optional arguments can be used:

• --aws-profile
• --aws-region

The following options cannot be used with barman-cloud-backup when cloud snapshots are requested:

• --bzip2, --gzip or --snappy
• --jobs

Once a backup has been taken it can be managed using the standard barman-cloud commands such as
barman-cloud-backup-delete and barman-cloud-backup-keep.

barman-cloud-restore for snapshots

The process for recovering from a snapshot backup with barman-cloud is very similar to the process for
barman backups except that barman-cloud-restore should be run instead of barman recover once
a recovery instance has been provisioned. This carries out the same pre-recovery checks as barman
recover and copies the backup label into place on the recovery instance.

The snapshot metadata required to provision the recovery instance can be queried using
barman-cloud-backup-show.

Copyright © 2010-2023, EnterpriseDB UK Limited 87

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Note that, just like when using barman-cloud-restore with an object stored backup, the command will
not prepare PostgreSQL for the recovery. Any PITR options, custom restore_command values or WAL
files required before PostgreSQL starts must be handled manually or by external tooling.

The following additional argument must be used with barman-cloud-restore when restoring a backup
made with cloud snapshots:

• --snapshot-recovery-instance

The following additional arguments are required with the gcp provider:

• --gcp-zone

The following additional arguments are required with the azure provider:

• --azure-resource-group

The following additional argument is available with the aws-s3 provider:

• --aws-region

The --tablespace option cannot be used with barman-cloud-restore when restoring a cloud snap-
shot backup:

Copyright © 2010-2023, EnterpriseDB UK Limited 88

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Troubleshooting

Diagnose a Barman installation

You can gather important information about the status of all the configured servers using:

barman diagnose

The diagnose command output is a full snapshot of the barman server, providing useful information,
such as global configuration, SSH version, Python version, rsync version, PostgreSQL clients version,
as well as current configuration and status of all servers.

The diagnose command is extremely useful for troubleshooting problems, as it gives a global view on
the status of your Barman installation.

Requesting help

Although Barman is extensively documented, there are a lot of scenarios that are not covered.

For any questions about Barman and disaster recovery scenarios using Barman, you can reach the dev
team using the community mailing list:

https://groups.google.com/group/pgbarman

or the IRC channel on freenode: irc://irc.freenode.net/barman

In the event you discover a bug, you can open a ticket using GitHub: https://github.com/EnterpriseDB/barman/issues

EnterpriseDB provides professional support for Barman, including 24/7 service.

Submitting a bug

Barman has been extensively tested and is currently being used in several production environments.
However, as any software, Barman is not bug free.

If you discover a bug, please follow this procedure:

• execute the barman diagnose command
• file a bug through the GitHub issue tracker, by attaching the output obtained by the diagnostics

command above (barman diagnose)

WARNING: Be careful when submitting the output of the diagnose command as it might
disclose information that are potentially dangerous from a security point of view.

Copyright © 2010-2023, EnterpriseDB UK Limited 89

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

The Barman project

Support and sponsor opportunities

Barman is free software, written and maintained by EnterpriseDB. If you require support on using
Barman, or if you need new features, please get in touch with EnterpriseDB. You can sponsor the
development of new features of Barman and PostgreSQL which will be made publicly available as open
source.

For further information, please visit:

• Barman website
• Support section
• EnterpriseDB website
• Barman FAQs
• 2ndQuadrant blog: Barman

Contributing to Barman

EnterpriseDB has a team of software engineers, architects, database administrators, system admin-
istrators, QA engineers, developers and managers that dedicate their time and expertise to improve
Barman’s code. We adopt lean and agile methodologies for software development, and we believe in
the devops culture that allowed us to implement rigorous testing procedures through cross-functional
collaboration. Every Barman commit is the contribution of multiple individuals, at different stages of the
production pipeline.

Even though this is our preferred way of developing Barman, we gladly accept patches from external
developers, as long as:

• user documentation (tutorial and man pages) is provided.
• source code is properly documented and contains relevant comments.
• code supplied is covered by unit tests.
• no unrelated feature is compromised or broken.
• source code is rebased on the current master branch.
• commits and pull requests are limited to a single feature (multi-feature patches are hard to test

and review).
• changes to the user interface are discussed beforehand with EnterpriseDB.

We also require that any contributions provide a copyright assignment and a disclaimer of any work-for-
hire ownership claims from the employer of the developer.

You can use GitHub’s pull requests system for this purpose.

Copyright © 2010-2023, EnterpriseDB UK Limited 90

https://www.pgbarman.org/
https://www.pgbarman.org/support/
https://www.enterprisedb.com/
https://www.pgbarman.org/faq/
https://blog.2ndquadrant.com/tag/barman/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Authors

In alphabetical order:

• Abhijit Menon-Sen
• Didier Michel
• Michael Wallace

Past contributors (in alphabetical order):

• Anna Bellandi (QA/testing)
• Britt Cole (documentation reviewer)
• Carlo Ascani (developer)
• Francesco Canovai (QA/testing)
• Gabriele Bartolini (architect)
• Gianni Ciolli (QA/testing)
• Giulio Calacoci (developer)
• Giuseppe Broccolo (developer)
• Jane Threefoot (developer)
• Jonathan Battiato (QA/testing)
• Leonardo Cecchi (developer)
• Marco Nenciarini (project leader)
• Niccolò Fei (QA/testing)
• Rubens Souza (QA/testing)
• Stefano Bianucci (developer)

Links

• check-barman: a Nagios plugin for Barman, written by Holger Hamann (MIT license)
• puppet-barman: Barman module for Puppet (GPL)
• Tutorial on "How To Back Up, Restore, and Migrate PostgreSQL Databases with Barman on

CentOS 7", by Sadequl Hussain (available on DigitalOcean Community)
• BarmanAPI: RESTFul API for Barman, written by Mehmet Emin Karakaş (GPL)

License and Contributions

Barman is the property of EnterpriseDB UK Limited and its code is distributed under GNU General
Public License 3.

© Copyright EnterpriseDB UK Limited 2011-2023

Barman has been partially funded through 4CaaSt, a research project funded by the European Commis-
sion’s Seventh Framework programme.

Copyright © 2010-2023, EnterpriseDB UK Limited 91

https://github.com/hamann/check-barman
https://github.com/2ndquadrant-it/puppet-barman
https://goo.gl/218Ghl
https://goo.gl/218Ghl
https://github.com/emin100/barmanapi
https://4caast.morfeo-project.org/

Barman, Backup and Recovery Manager for PostgreSQL: Barman Manual

Contributions to Barman are welcome, and will be listed in the AUTHORS file. EnterpriseDB UK Limited
requires that any contributions provide a copyright assignment and a disclaimer of any work-for-hire
ownership claims from the employer of the developer. This lets us make sure that all of the Barman
distribution remains free code. Please contact barman@enterprisedb.com for a copy of the relevant
Copyright Assignment Form.

Copyright © 2010-2023, EnterpriseDB UK Limited 92

	Introduction
	Before you start
	Design and architecture
	Where to install Barman
	One Barman, many PostgreSQL servers
	Streaming backup vs rsync/SSH
	The Barman WAL archive
	Two typical scenarios for backups
	Scenario 1: Backup via streaming protocol
	Scenario 2: Backup via rsync/SSH

	System requirements
	Requirements for backup
	Requirements for recovery

	Installation
	Installation on Red Hat Enterprise Linux (RHEL) and RHEL-based systems using RPM packages
	Installation on Debian/Ubuntu using packages
	Installation on SLES using packages
	Installation from sources
	PostgreSQL client/server binaries
	Third party PostgreSQL variants

	Upgrading Barman
	Upgrading to Barman 3.0.0
	Default backup approach for Rsync backups is now concurrent
	Metadata changes

	Upgrading from Barman 2.10
	Upgrading from Barman 2.X (prior to 2.8)
	Upgrading from Barman 1.X

	Configuration
	Options scope
	Examples of configuration

	Setup of a new server in Barman
	Preliminary steps
	PostgreSQL connection
	PostgreSQL WAL archiving and replication
	PostgreSQL streaming connection
	SSH connections

	The server configuration file
	WAL streaming
	Replication slots
	How to configure the WAL streaming
	Limitations of partial WAL files with recovery

	WAL archiving via archive_command
	WAL archiving via barman-wal-archive
	WAL archiving via rsync/SSH

	Verification of WAL archiving configuration
	Streaming backup
	Backup with rsync/SSH
	Backup with cloud snapshots
	Prerequisites for cloud snapshots
	Configuration for snapshot backups
	Taking a snapshot backup

	How to setup a Windows based server

	General commands
	cron
	diagnose
	list-servers

	Server commands
	archive-wal
	backup
	check
	generate-manifest
	get-wal
	list-backups
	rebuild-xlogdb
	receive-wal
	receive-wal process management
	Replication slot management

	replication-status
	show-servers
	status
	switch-wal
	verify-backup

	Backup commands
	Backup ID shortcuts
	check-backup
	delete
	keep
	list-files
	recover
	Remote recovery
	Tablespace remapping
	Point in time recovery
	Fetching WALs from the Barman server
	Recovering compressed backups

	show-backup

	Features in detail
	Backup features
	Incremental backup
	Limiting bandwidth usage
	Network Compression
	Backup Compression
	Concurrent backup
	Concurrent backup of a standby
	Immediate checkpoint
	Local backup

	Archiving features
	WAL compression
	Synchronous WAL streaming

	Catalog management features
	Minimum redundancy safety
	Retention policies

	Hook scripts
	Backup scripts
	Backup delete scripts
	WAL archive scripts
	WAL delete scripts
	Recovery scripts

	Customization
	Lock file directory
	Binary paths

	Integration with cluster management systems
	Parallel jobs
	Parallel jobs and sshd MaxStartups

	Geographical redundancy
	Sync information
	Configuration
	Node synchronisation
	Manual synchronisation

	Cloud snapshot backups
	Snapshot backup details
	Recovering from a snapshot backup
	Backup metadata for snapshot backups

	Barman client utilities (barman-cli)
	Installation

	Barman client utilities for the Cloud (barman-cli-cloud)
	Installation
	barman-cloud hook scripts
	Selecting a cloud provider
	Specificity by provider
	Google Cloud Storage

	barman-cloud and snapshot backups
	barman-cloud-backup for snapshots
	barman-cloud-restore for snapshots

	Troubleshooting
	Diagnose a Barman installation
	Requesting help
	Submitting a bug

	The Barman project
	Support and sponsor opportunities
	Contributing to Barman
	Authors
	Links
	License and Contributions

