tracklang.sty v1.6.1: tracking language
options

Nicola L.C. Talbot

Dickimaw Books
dickimaw-books.com

2022-12-13

This document is also available as HTML (tracklang-manual.html).
Abstract

The tracklang package is provided for package developers who want a simple
interface to find out which languages the user has requested through packages
such as babel and polyglossia. This package doesn’t provide any translations. Its
purpose is simply to track which languages have been requested by the user.
Generic TgX code is in tracklang. tex for non-KIgX users.

If the shell escape is enabled or \directlua is available, this package may also
be used to query the LC_ALL or LANG environment variable (see §6). Windows
users, who don’t have the locale stored in environment variables, can use texos-
query in combination with tracklang. (Similarly if LC_ALL or LANG don’t contain
sufficient information.) In order to use texosquery through the restricted shell
escape, you must have at least Java 8 and set up texosquery. cfg appropriately.
(See the texosquery manual for further details.)

The fundamental aim of this generic package is to be able to effectively say:

The user (that is, the document author) wants to use dialects xx—~XX, yy-YY-Scrp,
etc in their document. Any packages used by their document that provide multi-
lingual or region-dependent support should do whatever is required to activate
the settings for those languages and regions (or warn the user that there’s no
support).

Naturally, this is only of use if the locale-sensitive packages use tracklang to pick up this in-
formation, which is entirely up to the package authors, but at the moment there’s no standard

https://www.dickimaw-books.com/
tracklang-manual.html

method for packages to detect the required language and region. The aim of tracklang is to
provide that method. In particular, the emphasis is on using ISO language and region codes
rather than hard-coding the various language labels used by different language packages.

Related articles: “Localisation of TgX documents: tracklang” TUGboat, Volume 37 (2016),
No. 3, Localisation with tracklang.tex,' and tracklang FAQ.?

'dickimaw-books.com/latex/tracklang
2dickimaw-books.com/faq.php?category=tracklang

https://tug.org/TUGboat/tb2016-3/http://www.tug.org/TUGboat/tb37-3/tb117talbot.pdf
https://tug.org/TUGboat/tb2016-3/http://www.tug.org/TUGboat/tb37-3/tb117talbot.pdf
https://www.dickimaw-books.com/latex/tracklang
https://www.dickimaw-books.com/faq.php?category=tracklang
https://www.dickimaw-books.com/latex/tracklang
https://www.dickimaw-books.com/faq.php?category=tracklang

Contents

User Guide

. Introduction

. Summary of Use
2.1. DocumentLevel
211, GenericTgXo
212, BIEX .« o oo
2.2. Locale-Sensitive Packages
2.3. Language Packages

. Generic Use

Supplementary Packages

. Detecting the User’s Requested Languages

51. Examples
51.1. animals.sty
512. regioms.sty L.

. Adding Support for Language Tracking
6.1. Initialising a New Language or Dialect
6.2. Switching Language or Dialect
6.3. Defining New Scripts
6.4. Defining New Regions
6.5. Defining a New Language
6.6. Defining New tracklang Labels
6.7. Example (alien.sty)

Summaries

A. Region and Script Mappings

Symbols

Glossary

72
74
74
75
75
76
77
80

83
84
93

94

Command Summary

Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:

Index

Contents

ii

List of Tables

1.1. Predefined ISO Language-Region Dialects
1.2. Predefined Root Languages
1.3. Predefined Non-ISO Dialects

A.l. Region Mappings i e
A2, Script Mappings L

iii

Part |I.

User Guide

1. Introduction

When I'm developing a package that provides multilingual support (for example, glossaries)
it’s cumbersome trying to work out if the user has requested translations for fixed text. This
usually involves checking if babel or translator or polyglossia has been loaded and, if so, what
language settings have been used. The result can be a tangled mass of conditional code. The
alternative is to tell users to add the language as a document class option, which they may
or may not want to do, or to tell them to supply the language settings to every package they
load that provides multilingual support, which users are even less likely to want to do.

The tracklang package tries to neaten this up by working out as much of this information
as possible for you and providing a command that iterates through the loaded languages.
This way, you can just iterate through the list of tracked languages and, for each language,
either define the translations or warn the user that there’s no translation for that language.

This package works best with ngerman and german (since it’s a simple test to determine
if they have been loaded) and recent versions of polyglossia (which conveniently provides
\xpg@bcp@loaded) or when the language options are specified in the document class option
list. It works fairly well with translator but will additionally assume the root language was

also requested when a dialect is specified. So, for example,

\usepackage [british]{translator}
\usepackage{tracklang}

is equivalent to

\usepackage [british]{translator}
\usepackage [english,british]{tracklang}

This means that \ForEachTrackedDialect will iterate through the list “english,british”
instead of just “british”, which can result in some redundancy.

Unfortunately I can’t find any way of detecting a list of languages loaded through babel’s
new \babelprovide command. As far as I can tell, the only stored list is in \bbl@loaded
which only contains the languages loaded through package options.

If the ngerman package has been loaded, tracklang effectively does:

[\TrackPredefinedDialect{ngerman}

Similarly, if the german package has been loaded, tracklang effectively does

1. Introduction

\TrackPredefinedDialect{german}

If any document class or package options are passed to tracklang, then tracklang won’t
bother checking for babel, translator, ngerman, german or polyglossia. So, if the above exam-
ple is changed to:

=

\documentclass[british]{article}
\usepackage{translator}
\usepackage{tracklang}

then the dialect list will just consist of “british” rather than “english,british”. This does,
however, mean that if the user mixes class and package options, only the class options will
be detected. For example:

=

\documentclass[british]{article}
\usepackage [french] {babel}
\usepackage{tracklang}

In this case, only the british option will be detected. The user can therefore use the doc-
ument class option (or tracklang package option) to override the dialect and set the country
code (where provided). For example:

=

\documentclass[es-MX]{article}
\usepackage [spanish]{babel}
\usepackage{tracklang}

This sets the dialect to mexicanspanish and the root language to spanish.

Predefined dialects are listed in tables 1.1, 1.2 & 1.3. These may be passed in the document
class options or used in \TrackPredefinedDialect, as illustrated above.

§2 provides brief examples of use for those who want a general overview before reading
the more detailed sections. §3 describes generic commands for identifying the document
languages. §5 is for package writers who want to add multilingual support to their package
and need to know which settings the user has requested through language packages like
babel. §6 is for developers of language definition packages who want to help other package
writers to detect what languages have been requested.

1. Introduction

Table 1.1.: Predefined ISO Language-Region Dialects. (ISO tag or dialect label may be used
as a package option or with \TrackPredefinedDialect)

ISO Tag Dialect Label ‘ ISO Tag Dialect Label

cy-GB GBwelsh de-AT austrian
de-AT-1996 naustrian de-BE belgiangerman
de-CH swissgerman de-CH-1996 nswissgerman
de-DE germanDE de-DE-1996 ngermanDE

en-AU australian en-CA canadian

en-GB british en-GG guernseyenglish
en-1E IEenglish en-IM isleofmanenglish
en-JE jerseyenglish en-MT maltaenglish
en-NZ newzealand en-US american

es-AR argentinespanish | es-B0O bolivianspanish
es-CL chilianspanish es-CO columbianspanish
es-CR costaricanspanish | es-CU cubanspanish
es-DO dominicanspanish | es-EC ecudorianspanish
es-ES spainspanish es-GT guatemalanspanish
es—HN honduranspanish es-MX mexicanspanish
es-NI nicaraguanspanish | es-PA panamaspanish
es-PE peruvianspanish es-PR puertoricospanish
es-PY paraguayspanish es—SV elsalvadorspanish
es-UY uruguayspanish es-VE venezuelanspanish
fr-BE belgique fr-CA canadien

fr-CH swissfrench fr-FR france

fr-GG guernseyfrench fr-JE jerseyfrench
ga-GB GBirish ga-1E IEirish

gd-GB GBscottish hr-HR croatia

hu-HU hungarian id-IN bahasa

it-CH swissitalian it-HR istriacountyitalian
it-IT italy it-SI sloveneistriaitalian
it-SM sanmarino it-VA vatican

ms-MY malay mt-MT maltamaltese
nl-BE flemish nl-NL netherlands

pt-BR brazilian pt-PT portugal

rm-CH swissromansh s1-S1 slovenia

Other combinations need to be set with \TrackLocale or

\TrackLanguageTag

1. Introduction

Table 1.2.: Predefined Root Languages. ("Has an associated territory.) The corresponding tag
obtained with \GetTrackedLanguageTag{(dialect)} is shown in parentheses

abkhaz (ab)

akan (ak)
anglosaxon (ang)
aragonese’ (an-ES)
asturian (ast)
aymara (ay)
bahasam’ (ms-MY)
basque (eu)
berber (ber)
bokmal® (nb-NO)
bulgarian (bg)
chamorro (ch)
chinese (zh)
coptic (cop)
cree (cr)

danish (da)
dzongkha' (dz-BT)
esperanto (eo)
faroese (fo)
finnish (fi)
fula (£f)
georgian (ka)
guarani (gn)
hausa (ha)

hindi (hi)

ido (io)
interlingue (ie)
irish (ga)
javanese (jv)
kanuri (kr)
khmer (km)
kirundi (rn)
korean (ko)
kyrgyz (ky)
latvian (1v)
lithuanian (1t)
luxembourgish (1b)
malagasy (mg)
manx’ (gv-IM)
marshallese’ (mh-MH)
navajo' (nv-US)

afar (aa)
albanian (sq)
apache (apa)
armenian (hy)
avaric (av)
azerbaijani (az)
bambara’ (bm-ML)
belarusian (be)
bihari (bh)
bosnian (bs)
burmese (my)
chechen (ce)
churchslavonic (cu)
cornish® (kw-GB)
croatian (hr)
divehi (dv-MV)

easternpunjabi’ (pa-IN)

estonian (et)
farsi (fa)

french (fr)
galician (gl)
german (de)
gujarati (gu)
hebrew (he)
hirimotu’ (ho-PG)
igbo (ig)
inuktitut (iu)
italian (it)
kalaallisut (k1)
kashmiri® (ks-IN)
kikuyu (ki)

komi (kv-RU)
kurdish (ku)

lao (1o)
limburgish (11i)
1sorbian® (dsb-DE)
macedonian (mk)
malayalam’ (m1-IN)
maori® (mi-NZ)
mongolian (mn)
ndonga (ng)

afrikaans (af)
amharic’ (am-ET)
arabic (ar)
assamese (as)
avestan (ae)
bahasai® (id-IN)
bashkir (ba)
bengali (bn)
bislama’ (bi-VU)
breton’ (br-FR)
catalan (ca)
chichewa (ny)
chuvash® (cv-RU)
corsican (co)
czech (cs)

dutch (nl)
english (en)

ewe (ee)

fijian® (£j-FJ)
friulan® (fur-IT)
ganda’ (1g-UG)
greek (el)
haitian® (ht-HT)
herero (hz)
icelandic™ (is-1I8)
interlingua (ia)
inupiaq (ik)
japanese (ja)
kannada' (kn-IN)
kazakh (kk)
kinyarwanda (rw)
kongo (kg)
kwanyama (kj)
latin (1a)
lingala (1n)
lubakatanga’ (1u-CD)
magyar (hu)
maltese (mt)
marathi® (mr-IN)
nauruan’ (na-NR)
nepali (ne)

1. Introduction

Table 1.2.: Predefined Root Languages (Continued)

nko (nqo)
northernsotho (nso)
occitan (oc)

oromo (om)

pashto (ps)
portuges (pt)
romansh’ (rm-CH)
samoan (sm)
sardinian® (sc-IT)
shona (sn)

slovak (sk)

southernndebele’ (nr-ZA)

sudanese (su)
swedish (sv)
tahitian® (ty-PF)
tamil (ta)

thai® (th-TH)
tonga’ (to-TO)
turkish (tr)
ukrainian® (uk-UA)
usorbian’ (hsb-DE)
venda' (ve-ZA)
walloon (wa)

wolof (wo)

yoruba (yo)

norsk (no)
nuosu’ (ii-CN)
ojibwe (0j)
ossetian (0s)

piedmontese’ (pms-IT)

quechua (qu)
russian (ru)

sango (sg)
scottish (gd)
sindhi (sd)
slovene (sl)
southernsotho (st)
swahili (sw)
syriac (syr)

tai (tai)

tatar (tt)

tibetan (bo)
tsonga (ts)
turkmen (tk)
undetermined (und)
uyghur’ (ug-CN)
vietnamese (vi)
welsh (cy)

xhosa (xh)

zhuang' (za-CN)

northernndebele (nd)

nynorsk’ (nn-NQ)
oriya (or)

pali (pi)

polish (pl)
romanian (ro)
samin (se)
sanskrit (sa)
serbian (sr)
sinhalese’ (si-LK)
somali (so)
spanish (es)
swati (ss)
tagalog' (t1-PH)
tajik (tg)
telugu’ (te-1IN)
tigrinya (ti)
tswana (tn)

twi® (tw-GH)
urdu (ur)

uzbek (uz)
volapuk (vo)

westernfrisian’ (fy-NL)

yiddish (yi)
zulu (zu)

1. Introduction

Table 1.3.: Predefined Non-ISO Dialects. ("Has an associated territory.) The corresponding
language tag obtained with \GetTrackedLanguageTag{(dialect)} is shown in
parentheses. If the dialect has a corresponding mapping for the closest matching
non-root language \captions(dialect) or \date(dialect), this is also included af-

ter the tag following a slash.

acadian (fr)
argentinespanish’ (es-AR)
austrian’ (de-AT)
belgiangerman’ (de-BE)
bolivianspanish’ (es-B0)
brazilian® (pt-BR)

canadian® (en-CA)
chilianspanish® (es-CL)
costaricanspanish’ (es-CR)
cubanspanish’ (es-CU)

deutsch (de)
ecudorianspanish’ (es-EC)
flemish® (n1-BE)

france’ (fr-FR)

friulano® (fur-IT)

furlan® (fur-1IT)

gaelic (gd)

GBirish' (ga-GB)

GBwelsh' (cy-GB)

germanDE' (de-DE)
guernseyenglish® (en-GG/ british)
honduranspanish’ (es-HN)
IEenglish® (en-IE/british)
indon® (id-IN)
isleofmanenglish’ (en-IM/ british)
istriacountyitalian’ (it-HR)
jerseyenglish® (en-JE/ british)
kurmanji (ku)

lowersorbian’ (dsb-DE)
maltaenglish® (en-MT / british)
mexicanspanish’ (es-MX)
naustrian’ (de-AT-1996)

netherlands® (n1-NL)

ngerman (de-1996)

ngermanDE’ (de-DE-1996 / ngerman)
nil (und)

nswissgerman’ (de-CH-1996 / ngerman)

american’ (en-US)
australian’ (en-AU)
bahasa’ (id-1IN)

belgique’ (fr-BE)

brazil® (pt-BR)

british® (en-GB)

canadien’ (fr-CA)
columbianspanish® (es-C0)
croatia’ (hr-HR)

cymraeg (cy)
dominicanspanish’ (es-D0)
elsalvadorspanish’ (es-SV)
francais (fr)

frenchb (fr)

friulian® (fur-IT)

gaeilge (ga)

galicien (gl)

GBscottish' (gd-GB)
germanb (de)
guatemalanspanish*(es—GT)
guernseyfrench’ (fr-GG)
hungarian® (hu-HU)
IEirish’ (ga-IE)
indonesian (id-1IN)
istriacountycroatian*(hr—HR)
italy’ (it-IT)
jerseyfrench' (fr-JE)
latein (1a)

malay’ (ms-MY)
maltamaltese’ (mt-MT)
meyalu’ (ms-MY)
nbelgiangerman’ (de-BE-1996 /
ngerman)

newzealand' (en-NZ)
ngermanb (de-1996 / ngerman)
nicaraguanspanish*(es—NI)
norwegian’ (no-N0)
panamaspanish’ (es-PA)

1. Introduction

Table 1.3.: Predefined Non-ISO Dialects (Continued)

paraguayspanish’ (es-PY)
peruvianspanish’ (es-PE)
polutoniko (el)

portugal® (pt-PT)
puertoricospanishT(es—PR)
romansch (rm-CH)

russianb (ru)

serbianc (sr-Cyrl)
sloveneistriaitalian® (it-SI)

slovenia (s1-SI/slovenian)
spainspanish’ (es-ES)
swissgerman’ (de-CH)
swissromansh’ (rm-CH)
ukraine’ (uk-UA)
uppersorbian’ (hsb-DE)
USenglish' (en-US)
valencien (ca)
venezuelanspanish’ (es-VE)

persian (fa)
piemonteis’ (pms-1IT)
polutonikogreek (el)
portuguese (pt)
romanche (rm-CH)
rumantsch (rm-CH)
sanmarino’ (it-SM)
serbianl (sr-Latn)
sloveneistriaslovenian® (s1-SI/
slovenian)

slovenian (sl)
swissfrench’ (fr-CH)
swissitalian® (it-CH)
UKenglish' (en-GB)
ukraineb’ (uk-UA)
uruguayspanish’ (es-UY)
valencian (ca)

vatican® (it-VA)

2. Summary of Use

There are three levels of use:
1. document level (code used by document authors);

2. locale-sensitive package level (code for package authors who need to know what lan-
guages or locale the document is using, such as glossaries to translate commands like
\descriptionname or datetime2 to provide localised formats or time zone informa-
tion);

3. language set-up level (code for packages that set up the document languages, such as
babel or polyglossia).

2.1. Document Level

Document level use can be divided into generic TgX use (§2.1.1) and BIEX-specific use (§2.1.2).

2.1.1. Generic TEX

This section is for generic TgX use. The tracklang files are loaded with \input. See §2.1.2 for
EIEX use.

A Unix-like user wants the locale information picked up from the locale environment
variable (the tex extension may be omitted):

=

\input tracklang.tex % v1.3
\TrackLangFromEnv
% load packages that use tracklang for localisation

A Windows user wants the locale information picked up from the operating system (again
the tex extension may be omitted):

=

\input texosquery.tex

\input tracklang.tex % v1.3

\TrackLangFromEnv

% load packages that use tracklang for localisation

2. Summary of Use

Or (texosquery v1.2)

\input texosquery.tex % v1.2
\input tracklang.tex % v1.3

\TeX0SQueryLangTag{\langtag}
\TrackLanguageTag{\langtag}
% load packages that use tracklang for localisation

A Unix-like user who may or may not have texosquery setup to run in the shell escape:

\input texosquery.tex
\input tracklang.tex % v1.3

\ifx\TeX0SQueryLangTag\undefined

\TrackLangFromEnv

\else

\TeX0SQueryLangTag{\langtag}
\TrackLanguageTag{\langtag}

\fi

% load packages that use tracklang for localisation

A user is writing in Italy in Armenian with a Latin script (Latn) and the arevela variant:

=

\input tracklang.tex % v1.3
\TrackLanguageTag{hy-Latn-IT-arevela}
% load packages that use tracklang for localisation

A user is writing in English in the UK:

\input tracklang.tex
\TrackPredefinedDialect{british}
% load packages that use tracklang for localisation

Find out information about the current language (supplied in \languagename):

\SetCurrentTrackedDialect{\languagename}
Dialect: \CurrentTrackedDialect.

10

2. Summary of Use

Language: \CurrentTrackedLanguage.

IS0 Code: \CurrentTrackedIsoCode.

Region: \CurrentTrackedRegion.

Modifier: \CurrentTrackedDialectModifier.
Variant: \CurrentTrackedDialectVariant.
Script: \CurrentTrackedDialectScript.
Sub-Lang: \CurrentTrackedDialectSubLang.
Additional: \CurrentTrackedDialectAdditional.
Language Tag: \CurrentTrackedLanguageTag.

Additional information about the script can be obtained by also loading tracklang-scripts:

=

\input tracklang-scripts.tex

The name, numeric code and direction can now be obtained:

Name: \TrackLangScriptAlphaToName{\CurrentTrackedDialectScript}.
Numeric:
\TrackLangScriptAlphaToNumeric{\CurrentTrackedDialectScript}.
Direction:
\TrackLangScriptAlphaToDir{\CurrentTrackedDialectScript}.

Test for a specific script (in this case Latn):

Latin?
\ifx\CurrentTrackedDialectScript\TrackLangScriptLatn
Yes
\else
No
\fi

2.1.2. BTEX

This section is for KIgX use. See §2.1.1 for generic TgX use.
With newer versions of polyglossia, where \xpg@bcp@loaded is defined, you just need to
make sure the languages are set before tracklang is loaded:

11

2. Summary of Use

\documentclass{article}

\usepackage{polyglossia}

\setmainlanguage [variant=uk]{english}

% load packages that use tracklang for localisation

O

For older versions of polyglossia where the regional information is required, use recognised
class options:

\documentclass[en-GB]{article}
\usepackage{polyglossia}

\setmainlanguage [variant=uk]{english}

% load packages that use tracklang for localisation

O

For babel users where the supplied babel dialect label is sufficient, and is passed either
through the document class or package options, there’s no need to do anything special:

\documentclass[british, canadien]{article}
\usepackage [T1]{fontenc}

\usepackage{babel}

% load packages that use tracklang for localisation

O

If the region is important but there’s no babel dialect that represents it, there are several
options. The first method is to use the class options recognised by tracklang and the root
language labels when loading babel:

\documentclass[en-IE,ga-IE]{article}
\usepackage [english,irish]{babel}
% load packages that use tracklang for localisation

__ B

Another method with babel is to use \TrackLanguageTag and map the new dialect label
to the nearest matching \captions(dialect):

&

\documentclass{article}

\usepackage{tracklang}, v1.3
\TrackLanguageTag{en-MT}
\SetTrackedDialectLabelMap{\TrackLanglastTrackedDialect}{UKenglish}

12

2. Summary of Use

\usepackage [UKenglish] {babel}
% load packages that use tracklang for localisation

This ensures that the \captionsUKenglish hook is detected by the localisation packages.
This mapping isn’t needed for polyglossia as the caption hooks use the root language label.
This mapping also isn’t needed if british is used instead of UKenglish since the en-MT
(maltaenglish)predefined dialect automatically sets up a mapping to british. (The default
mappings are shown in Table 1.3 on page 7.)

There’s no support for \babelprovide. If you are using \babelprovide, you will need
to use the class option or \TrackLanguageTag as above.

2.2. Locale-Sensitive Packages

Let’s suppose you are developing a package called mypackage.sty or mypackage.tex and
you want to find out what languages the document author has requested. (See also: Using
tracklang.tex in Packages with Localisation Features.")

Generic TgX use (the tex extension may be omitted):

\input tracklang.tex

B

(Most of the commands used in this section require at least tracklang version 1.3 but 1.4 is
better if you want to include the script tag in the 1df files.) Note that tracklang.tex has a
check to determine if it’s already been loaded, so you don’t need to worry about that.

KX use:

B

[\RequirePackage{tracklang}[2019/11/30]% at least v1.4

This will picked up any language options supplied in the document class options and will
also detect if babel or polyglossia have been loaded.
(ETEX) If you want to allow the user to set the locale in the package options:

\DeclareOption*{\TrackLanguageTag{\CurrentOption}}

This means the user can do, say,

\usepackage [hy-Latn-IT-arevela] {mypackage}

8 LB

'dickimaw-books.com/latex/tracklang/otherpkg.shtml

13

https://www.dickimaw-books.com/latex/tracklang/otherpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/otherpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/otherpkg.shtml

2. Summary of Use

With at least version 1.4, it’s better to use \TrackIfKnownLanguage:

\DeclareOption*{%

{% successful

Yh
{% failed
\PackageError{mypackage}

or a valid language tag}
Yh
}

\TrackIfKnownLanguage{\CurrentOption}

\PackageInfo{mypackage}{Tracking language ~\CurrentOption'}J

{Unknown language specification ~\CurrentOption'}J
{You need to supply either a known dialect label

(@]

The rest of the example package in this section uses generic code. If you are using
KEIEX, it’s better to replace \def and \ifx with more appropriate BIgX commands.

| S

If you want to fetch the locale information from the operating system when the user hasn’t

requested a language:

\AnyTrackedLanguages
{}

\ifx\TeX0SQueryLangTag\undefined
% texosquery v1.2 not available
\TrackLangFromEnv

\else
% texosquery v1.2 available
\TeX0SQueryLangTag{\langtag}
\TrackLanguageTag{\langtag}

\fi

}

{% fetch locale information from the operating system

Set up the defaults if necessary:

\def\fooname{Foo}
\def\barname{Bar}

14

2. Summary of Use

Now load the resource files:

\AnyTrackedLanguages
{h
\ForEachTrackedDialect{\thisdialect}{’
\TrackLangRequireDialect{mypackage}{\thisdialect}/,
Yh
}
{}% no tracked languages, default already set up

Each resource file has the naming scheme (prefix)-(localeid).1df. In this example, the
(prefix) is mypackage. The (localeid) part may be the language or dialect label (for example,
english or british) or a combination of the ISO language and region codes (for example,
en-GB or en or GB). As from version 1.4, (localeid) may also include the script or variant.
(See the definition of \IfTrackedLanguageFileExists on page 44 for further details.)

The simplest scheme is to use the root language label (not the dialect label) for the base
language settings and use the ISO codes for regional support.

For example, the file mypackage-english.1ldf:

% identify this file:
\TrackLangProvidesResource{english}[2016/10/06 v1.0]

\TrackLangAddToCaptions{%
\def\fooname{Foo}/,
\def\barname{Bar}/

}

This sets up appropriate the \captions(dialect) hook (if it’s found). For other hooks, such
as \date(dialect), use \TrackLangAddToHook or \TrackLangRedefHook instead.

With pre-v1.4 versions of tracklang, the script isn’t included in the file search. If it’s
needed then either require at least v1.4 or have a base 1df file that tries to load a version
for the particular script (which can be accessed with \CurrentTrackedDialectScript).
Here’s an example for a language with different writing systems. The resource file for Ser-
bian mypackage-serbian.1df:

,

% identify file:
\TrackLangProvidesResource{serbian}[2016/10/06 v1.0]

\TrackLangRequestResource{serbian-\CurrentTrackedDialectScript}
{}% file not found, do something sensible here

15

2. Summary of Use

The file mypackage-serbian-Latn.1df sets up the Latin script (Latn):

\TrackLangProvidesResource{serbian-Latn}[2016/10/06 v1.0]

\TrackLangAddToCaptions{%
\def\fooname{...}), provide appropriate Latin translations
\def\barname{. ..}/

}

The file mypackage-serbian-Cyrl.1df sets up the Cyrillic script (Cyrl):

\TrackLangProvidesResource{serbian-Cyrl}[2016/10/06 v1.0]

\TrackLangAddToCaptions{%
\def\fooname{...}), provide appropriate Cyrillic translations
\def\barname{. ..}

}

With v1.4+ you just need mypackage-sr-Latn.1df and mypackage-sr-Cyrl.1df for the
regionless versions.

2.3. Language Packages

Let’s suppose now you're the developer of a package that sets up the language, hyphenation
patterns and so on. It would be really helpful to the locale-sensitive packages in §2.2 to know
what languages the document author has requested. You can use the tracklang package to
identify this information by tracking the requested localisation, so that other packages can
have a consistent way of querying it. (See also: Integrating tracklang.tex into Language
Packages.?)

Generic use:

\input tracklang

Alternative EIgX use:

\RequirePackage{tracklang}[2019/11/30]% v1.4

2dickimaw-books.com/latex/tracklang/langpkg.shtml

16

https://www.dickimaw-books.com/latex/tracklang/langpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/langpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/langpkg.shtml

2. Summary of Use

Unlike \input, \RequirePackage will allow tracklang to pick up the document class op-
tions, but using \RequirePackage will also trigger the tests for known language packages.
(If you want to find out if tracklang has already been loaded and locales have already been
tracked, you can use the same code as in the previous section.)

When a user requests a particular language through your package, the simplest way of
letting tracklang know about it is to use \TrackPredefinedDialect or \TrackLanguage-
Tag. For example, if the user requests british, that’s a predefined dialect so you can just
do:

=

\TrackPredefinedDialect{british}

Alternatively

=

\TrackLanguageTag{en-GB}

If your package uses caption hooks, then you can set up a mapping between tracklang’s
internal dialect label and your caption label. For example, let’s suppose the closest match
to English used in Malta (en-MT) is the dialect UKenglish (for example, the date format is
similar between GB and MT):

\TrackLanguageTag{en-MT}
\SetTrackedDialectLabelMap{\TrackLanglastTrackedDialect}{UKenglish}
\def\captionsUKenglish{J

\def\contentsname{Contents}/,

hoo..

b

(The predefined maltaenglish option provided by tracklang automatically sets the mapping
to british, but the above method will change that mapping to UKenglish.)

This now means that \TrackLangAddToHook and \TrackLangRedefHook commands can
find your language hooks. You don’t need the map if your dialect label is the same as track-

lang’s root language label for that locale. For example:

\TrackLanguageTag{en-MT}

\def\captionsenglish{Y
\def\contentsname{Contents}/
e

}

When the user switches language through commands like \selectlanguage it would be

17

2. Summary of Use

useful to also use \SetCurrentTrackedDialect{(dialect)} to make it easier for the docu-
ment author or locale-sensitive packages to pick up the current locale. The (dialect) argu-
ment may be tracklang’s internal dialect label or the dialect label you assigned with \Set-
TrackedDialectLabelMap. It may also be the root language label, in which case tracklang
will search for the last dialect to be tracked with that language. For example:

\def\selectlanguage#1{’
\SetCurrentTrackedDialect{#1}/
% set up hyphenation patterns etc

b

See the example in §2.1 or the example in Integrating tracklang.tex into Language Pack-
3
ages.

3dickimaw-books.com/latex/tracklang/langpkg.shtml

18

https://www.dickimaw-books.com/latex/tracklang/langpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/langpkg.shtml
https://www.dickimaw-books.com/latex/tracklang/langpkg.shtml

3. Generic Use

For plain TgX you can input tracklang. tex:

[\input tracklang

or for TgX formats that have an argument form for \input:

=

[\input{tracklang}

As from version 1.3, you don’t need to change the category code of @ before loading track-
lang.tex as it will automatically be changed to 11 and switched back at the end (if required).

The KIEX package tracklang.sty inputs the generic TgX code in tracklang.tex, but
before it does so it defines

X

\@tracklang@declareoption{(dialect)?}

to

[\DeclareOption{{dialect)}{\TrackPredefinedDialect{(dialect)}}

If \@tracklang@declareoption isn’t defined when tracklang.tex is input, it will be de-
fined to ignore its argument.

This means that all the predefined languages and dialects (tables 1.1, 1.2 & 1.3) automati-
cally become package options, so the tracklang.sty package can pick up document class
options and add them to tracklang’s internal list of tracked document languages.

If you’re not using KIEX, this option isn’t available although you can redefine \@track-
lang@declareoption to use something analogous to \DeclareOption, if appropriate. Oth-
erwise, the document languages need to be explicitly identified (using any of the following
commands) so that tracklang knows about them.

X

\TrackPredefinedDialect{(dialect label)}

This will add the predefined dialect and its associated ISO codes to the list of tracked docu-
ment languages. The (dialect label) may be any of those listed in tables 1.1, 1.2 & 1.3.

19

3. Generic Use

For example:

\input tracklang
\TrackPredefinedDialect{british}

is the Plain TgX alternative to:

\documentclass[british]{article}
\usepackage{tracklang}

Note that it’s impractical to define every possible language and region combination as it
would significantly slow the time taken to load tracklang so, after version 1.3, I don’t intend
adding any new predefined dialects. As from version 1.3, if you want to track a dialect that’s
not predefined by tracklang, then you can use:

X

\TrackLocale{(locale)}

If (locale) is a recognised dialect, this is equivalent to using \TrackPredefinedDialect,
otherwise (locale) needs to be in one the following formats:

ISO lang

ISO lang)-(ISO country)

{)
« (ISO lang)@(modifier)
{)
(ISO lang)-(ISO country)@(modifier)

where (ISO lang) is the ISO 639-1 or 639-2 code identifying the language (lower case), (ISO
country) is the 3166-1 ISO code identifying the territory (upper case) and (modifier) is the
modifier or variant. The hyphen (-) may be replaced by an underscore character (_). Code-set
information in the form . (codeset) may optionally appear before the modifier. For example,
de-DE.utf80@new (modifier is new) or en-GB.utf8 (modifier is missing). The code-set will
be ignored if present, but it won’t interfere with the parsing.

For example:

\TrackLocale{de-NAGnew}

indicates German in Namibia using the new spelling.

20

3. Generic Use

[i
=
If a language has different ISO 639-2 (T) and 639-2 (B) codes, then the “T” form should
be used. (So for the above example, deu may be used instead of de, but ger won’t be

recognised.)

Alternatively, you can use

\TrackLanguageTag{(tag)}

where (tag) is a regular, well-formed language tag or a recognised dialect label. (Irregular
grandfather tags aren’t recognised.) This command will fully expand (tag). A warning is
issued if the tag is empty.

If you want to first check that (tag) includes a valid language code, then you can instead
use:

X

\TrackIfKnownLanguage{(tag)}{(success code)}{(fail code)?

This will only track (tag) (and then do (success code)) if (tag) starts with a valid language
code (or is a predefined dialect) otherwise it will do (fail code). Both \TrackLanguageTag
and \TrackIfKnownLanguage will check if (tag) is a predefined option. (This saves parsing
the tag if it’s recognised.)

For example:

\TrackLanguageTag{hy-Latn-IT-arevela}
Latn-ME: \TrackIfKnownLanguage{Latn-ME}{success}{fail}.
brazilian: \TrackIfKnownLanguage{brazilian}{success}{fail}.

This will track hy-Latn-IT-arevela and brazilian (pt-BR) but not Latn-ME (because it
doesn’t contain a valid language code) even though it’s a valid script and country code. The
above is just for illustrative purposes. Typically the language tracking isn’t performed within
the document text.

The datetime?2 package assumes that any unknown package option is a language identifier.
It could simply do:

\TrackLanguageTag{\CurrentOption}

but users can make mistakes sometimes and this won’t provide any helpful information if
they, for example, misspelt a package option or forgot the “(key)=" part of a (key)=(value)
setting. Instead (as from v1.5.5) datetime2 now does:

21

3. Generic Use

\TrackIfKnownLanguage{\CurrentOption}
{...}/ known language
{\PackageError{...}{...}...}}

This will now give the user some guidance.

If (tag) contains a sub-language tag, this will be set as the 639-3 code for the dialect label.
Note that this is different to the root language codes which are set using the language label.
For example:

=

\TrackLanguageTag{zh-cmn-Hans-CN}

creates a new dialect with the label zhcmnHansCN. The root language chinese has the 639-1
code zh and the dialect zhcmnHansCN has the ISO 639-3 code cmn.

=

IS0 639-1: \TrackedIsoCodeFromLanguage{639-1}{chinese}.
IS0 639-3: \TrackedIsoCodeFromLanguage{639-3}{zhcmnHansCN}.

Version 1.2 of texosquery provides the command \TeX0SQueryLangTag, which may be
used to fetch the operating system’s regional information as a language tag. These commands

can be used as follows:

\input tracklang % v1.3
\input texosquery % v1.2

\TeX0SQueryLangTag{\langtag}
\TrackLanguageTag{\langtag}

(If the shell escape is disabled, \langtag will be empty, which will trigger a warning but no
errors.)

Some of the predefined root language options listed in Table 1.2 on page 5 have an asso-
ciated region (denoted by). If \TrackLocale is used with just the language ISO code, no
region is tracked for that language. For example

=

\TrackLocale{manx}

will track the IM (Isle of Man) ISO 3166-1 code but

\TrackLocale{gv}

22

3. Generic Use

won’t track the region. Similarly for \TrackLanguageTag.
(New to version 1.3.) There’s a similar command to \TrackLocale that doesn’t take an
argument:

X

\TrackLangFromEnv

If the shell escape has been enabled or \directlua is available, this will try to get the lan-
guage information from the system environment variables LC_ALL or LANG and, if successful,
track that.

Since tracklang is neither able to look up the POSIX locale tables nor interpret file locales,
if the result is C or POSIX or starts with a forward slash / then the locale value is treated as
empty.

(i]
=
Not all operating systems use environment variables for the system locale information.

For example, Windows stores the locale information in the registry. In which case,
consider using texosquery.

If the operating system locale can’t be obtained from environment variables, then track-
lang will use \TeX0SQueryLocale as a fallback if texosquery has been loaded. Since texos-
query requires both the shell escape and the Java runtime environment, tracklang doesn’t
automatically load it.

Plain TgX example:

\input texosquery
\input tracklang
\TrackLangFromEnv

Document build:

etex --shell-escape (filename)

EIEX example:

\usepackage{texosquery}
\usepackage{tracklang}
\TrackLangFromEnv

Document build:

23

3. Generic Use

pdflatex --shell-escape (filename)

If the locale can’t be determined, there will be warning messages. These can be suppressed
using

X
\TrackLangShowWarningsfalse
or switched back on again using
X
\TrackLangShowWarningstrue

For example, [have the environment variable LANG set to en_GB.utf8 on my Linux system
so instead of

[\TrackPredefinedDialect{british}

I can use

[\TrackLangFromEnv

With EIEX documents I can do

\documentclass{article}
\usepackage{tracklang}
\TrackLangFromEnv

_ B L0 (B

However, this only helps subsequently loaded packages that use tracklang to determine the
required regional settings. For example:

\documentclass{article}
\usepackage{tracklang}
\TrackLangFromEnv

\usepackage [useregional]{datetime2}

B

In my case, with the LANG environment variable set to en_GB.utf8 and the shell escape
enabled, this automatically switches on the en-GB date style. Naturally this doesn’t help
locale-sensitive packages that don’t use tracklang.

24

3. Generic Use

The \TrackLangFromEnv command also incidentally sets \TrackLangEnv to the value
of the environment variable or empty if the query was unsuccessful (for example, the shell
escape is unavailable).

If the command:

X

\TrackLangEnv
user defined

is already defined before \TrackLangFromEnv is used, then the environment variable won’t
be queried and the value of \TrackLangEnv will be parsed instead.

[i
=
The parser which splits the locale string into its component parts first tries splitting

on the underscore _ with its usual category code 8, then tries splitting on a hyphen
- with category code 12, and then tries splitting on the underscore _ with category
code 12.

For example:

\def\TrackLangEnv{en-GB}
\TrackLangFromEnv

This doesn’t perform a shell escape since \TrackLangEnv is already defined. In this case,
you may just as well use:

Ej
\TrackLocale{en-GB}

(unless you happen to additionally require the component commands that are set by \Track-
LangFromEnv, see below.)

If the shell escape is unavailable (for example, your TgX installation prohibits it), you can
set this value when you invoke TgX. For example, if the document file is called myDoc.tex
(and it’s in Plain TgX):

tex "\\def\\TrackLangEnv{$LANG}\\input myDoc" \

The \TrackLangFromEnv command also happens to store the component parts of the en-
vironment variable value in the following commands. (These aren’t provided by \Track-
Locale.) If the information is unavailable, the relevant commands will be set to empty.

25

3. Generic Use

The language code is stored in:

\TrackLangEnvLang

The territory (if present) is stored in:

\TrackLangEnvTerritory

The code-set (if present) is stored in:

\TrackLangEnvCodeSet

The modifier (if present) is stored in:

\TrackLangEnvModifier

If you want to query the language environment, but don’t want to track the result, you
can just use:

X

[\TrackLangQueryEnv

This only tries to fetch the value of the language environment variable (and use texosquery
as a fallback, if it has been loaded). It doesn’t try to parse the result. The result is stored in
\TrackLangEnv (empty if unsuccessful). Unlike \TrackLangFromEnv, this doesn’t check if
\TrackLangEnv already exists. A warning will occur if the shell escape is unavailable. For
systems that store the locale information in environment variables, this is more efficient than
using texosquery’s \TeX0SQueryLocale command (which is what’s used as the fallback).

The above queries LC_ALL and, if that is unsuccessful, then queries LANG (before optionally
falling back on texosquery). If you want another environment variable tried after LC_ALL and
before LANG, you can instead use:

X

\TrackLangQueryOtherEnv{(env-name)}

For example, to also query LC_MONETARY:

[\TrackLangQueryOtherEnv{LC_MONETARY}

26

3. Generic Use

Since this sets \TrackLangEnv, you can use it before \TrackLangFromEnv. For example:

=

\TrackLangQueryOtherEnv{LC_MONETARY}
\TrackLangFromEnv

Remember that if you only want to do the shell escape if \TrackLangEnv hasn’t already been
defined, you can test for this first:

Ei

\ifx\TrackLangEnv\undefined
\TrackLangQueryOtherEnv{LC_MONETARY}

\fi

\TrackLangFromEnv

It’s also possible to just parse the value of \TrackLangEnv without tracking the result
using:

X

\TrackLangParseFromEnv

This is like \TrackLangFromEnv but assumes that \TrackLangEnv has already been set and
doesn’t track the result. The component parts are stored as for \TrackLangFromEnv.
Example (Plain TgX):

\input tracklang
\def\TrackLangEnv{fr-BE.utf8@euro}
\TrackLangParseFromEnv

Language: \TrackLangEnvlLang.

Territory: \TrackLangEnvTerritory.

Codeset: \TrackLangEnvCodeSet.

Modifier: \TrackLangEnvModifier.

Any tracked languages? \AnyTrackedLanguages{Yes}{No}.

This produces:

Language: fr. Territory: BE. Codeset: utf8. Modifier: euro. Any tracked languages?
No.

27

3. Generic Use

Compare this with:

\input tracklang
\def\TrackLangEnv{fr-BE.utf80@euro’
\TrackLangFromEnv

Language: \TrackLangEnvLang.

Territory: \TrackLangEnvTerritory.

Codeset: \TrackLangEnvCodeSet.

Modifier: \TrackLangEnvModifier.

Any tracked languages? \AnyTrackedLanguages{Yes}{No}.
Tracked dialect(s):%
\ForEachTrackedDialect{\thisdialect}{\space\thisdialect}.

This produces:

Language: fr. Territory: BE. Codeset: utf8. Modifier: euro. Any tracked languages?
Yes. Tracked dialect(s): belgique.

If \TrackLangFromEnv doesn’t recognise the given language and territory combination,
it will define a new dialect and add that.
For example, tracklang doesn’t recognise en-BE, so the sample document below defines a

new dialect labelled enBEeuro:

\input tracklang
\def\TrackLangEnv{en-BE.utf8@euro}
\TrackLangFromEnv

Language: \TrackLangEnvLang.

Territory: \TrackLangEnvTerritory.

Codeset: \TrackLangEnvCodeSet.

Modifier: \TrackLangEnvModifier.

Any tracked languages? \AnyTrackedLanguages{Yes}{No}.
Tracked dialect(s):%
\ForEachTrackedDialect{\thisdialect}{\space\thisdialect}.

This now produces:

28

3. Generic Use

—

Language: en. Territory: BE. Codeset: utf8. Modifier: euro. Any tracked languages?
Yes. Tracked dialect(s): enBEeuro.

29

4. Supplementary Packages

In addition to the main tracklang.tex file and tracklang. sty KIgX wrapper, the tracklang
package also provides supplementary files for region and script mappings.

tracklang-region-codes.tex

This file is only loaded if a mapping is required between numeric and alphabetic region
codes. If \TrackLanguageTag encounters a numeric region code, it will automatically in-
put tracklang-region-codes.tex, if it hasn’t already been input. This file provides the
following commands.

X

\TrackLangAlphaIIToNumericRegion{(alpha-2 code)}

Expands to the numeric code corresponding to the given alpha-2 code or empty if no mapping
has been supplied.

X

\TrackLangNumericToAlphalIRegion{(numeric code)}

Expands to the alpha-2 code corresponding to the given numeric code or empty if no mapping
has been supplied.

X

\TrackLangIfKnownAlphaIlIRegion{(alpha-2 code)}{(true)}{(false)*

Expands to (true) if there’s an alpha-2 to numeric region code mapping, otherwise expands

to (false).

X

\TrackLangIfKnownNumericRegion{(numeric code)}{(true)}{(false)}

Expands to (true) if there’s a numeric to alpha-2 region code mapping, otherwise expands to

(false).

X

\TrackLangAlphaIIIToNumericRegion{(alpha-3 code)}

30

4. Supplementary Packages

Expands to the numeric code corresponding to the given alpha-3 code or empty if no mapping
has been supplied.

X

\TrackLangNumericToAlphaIIIRegion{(numeric code)}

Expands to the alpha-3 code corresponding to the given numeric code or empty if no mapping
has been supplied.

X

\TrackLangIfKnownAlphaIIIRegion{(alpha-3 code)}{(true)}{(false)}

Expands to (true) if there’s an alpha-3 to numeric region code mapping, otherwise expands

to (false).

Mappings are established with:

\TrackLangRegionMap{(numeric)}{(alpha-2)}{{alpha-3)}

Predefined mappings are listed in Table A.1 on page 84.
When tracklang-region-codes.tex is input, it can load additional files that provide
supplementary mappings.

X

\TrackLangAddExtraRegionFile{(file)}

This command adds the supplied (file) to the list of extra region code files that should be
input by tracklang-region-codes.tex, unless tracklang-region-codes.tex has al-
ready been input, in which case (file) will be input straight away:.

tracklang-scripts.tex

The tracklang-scripts package provides information about ISO 15924 scripts. The file isn’t
automatically loaded. If you want to use any of the commands provided in it you need to
input it.

Plain TEX:

Bl

\input tracklang-scripts

There’s a simple wrapper package tracklang-scripts.sty for KIgX users:

\usepackage{tracklang-scripts}

31

4. Supplementary Packages

\TrackLangScriptMap{(letter code)}{(numeric code) }{(script
name) }{ (direction) }{ (parent script)}

Defines a mapping. The first argument is the four letter alpha code, such as Latn or Cyrl. The
second argument is the numeric code. The third argument is the script’s name, for example
“Imperial Aramaic”. The fourth argument is the direction, which may be one of: LR (left-to-
right), RL (right-to-left), TB (top-to-bottom), varies or inherited. The (parent) argument
is for the parent writing system, which may be left blank (currently unsupported).

This command defines:

\TrackLangScript(Code)

which expands to (Code) for use with \IfTrackedDialectIsScriptCs.
See Table A.2 on page 88 for a summary of all the mappings that are provided by the file
tracklang-scripts.tex.

X

\TrackLangScriptAlphaToNumeric{(alpha code)}

Expands to the numeric code corresponding to the given alpha code or empty if no mapping.

D ——

X

\TrackLangScriptIfKnownAlpha{(alpha code)}{(true)}{(false)}

Expands to (true) if there is a known alpha to numeric mapping or (false) otherwise.

\TrackLangScriptNumericToAlpha{(numeric code)?}

Expands to the alpha code corresponding to the given numeric code or empty if no mapping.

)

X

\TrackLangScriptIfKnownNumeric{(numeric code)}{(true)}{(false)}

Expands to (true) if there is a known numeric to alpha mapping or (false) otherwise.

\TrackLangScriptAlphaToName{(alpha code)}

32

4. Supplementary Packages

Expands to the name corresponding to the given alpha code or empty if no mapping.

\TrackLangScriptAlphaToDir{(alpha code)}

Expands to the direction corresponding to the given alpha code or empty if no mapping.

X
\TrackLangScriptSetParent{(alpha code)}{(parent alpha code)}
Sets the parent for the given alpha code.
I
\TrackLangScriptGetParent{(alpha code)}
Expands to the parent for the given alpha code or empty if no mapping.
b §
\TrackLangScriptIfHasParent{(alpha code)}{(true)}{(false)}

Expands to (true) if the given alpha code has a parent or to (false) otherwise. Note that if
a parent is explicitly set to empty with \TrackLangScriptSetParent then it will be con-
sidered defined, but if the (parent) argument was empty in \TrackLangScriptMap, then it
will be undefined.

X

\TrackLangAddExtraScriptFile{(file)}

This command adds (file) to the list of extra script files that should be input by tracklang
-scripts.tex, unless tracklang-scripts.tex hasalready been input, in which case (file)
will be input straight away:.

33

5. Detecting the User’'s Requested
Languages

The tracklang package tries to track the loaded languages and the option names used to
identify those languages. For want of a better term, the language option names are referred to
as dialects even if they’re only a synonym for the language rather than an actual dialect. For
example, if the user has requested british, the root language label is english and the dialect
is british, whereas if the user requested UKenglish, the root language label is english and
the dialect is UKenglish. The exceptions to this are the tracklang package options that have
been specified in the form (iso lang)-(iso country) (listed in Table 1.2 on page 5). For example,
the package option en-GB behaves as though the user requested the package option british.

If \TrackLocale or \TrackLangFromEnv are used and the locale isn’t recognised a new
dialect is created with the label formed from the ISO codes (and modifier, if present). Sim-
ilarly for \TrackLanguageTag a new dialect is created with a label that’s essentially the
language tag without the hyphen separators. For example,

\TrackLocale{xx-YY}

will add a new dialect with the label xxYY,

B
\TrackLocale{xx-YY@mod}

will add a new dialect with the label xxYYmod and

\TrackLanguageTag{xx-Latn-YY}

will add a new dialect with the label xxLatnYY.

l 1
=
If \TrackLocale or \TrackLangFromEnv find a modifier, the value will be sanitized

to allow it to be used as a label. If the modifier is set explicitly using \SetTracked-
DialectModifier, no sanitization is performed.

In addition to the root language label and the dialect identifier, many of the language
options also have corresponding ISO codes. In most cases there is an ISO 639-1 or an ISO

34

5. Detecting the User’s Requested Languages

639-2 code (or both), and in some cases there is an ISO 3166-1 code identifying the dialect
region. Where a language has different ISO 639-2 (T) and 639-2 (B) codes, the “T” version is
assumed.

When the tracklang.sty BIEX package is loaded, it first attempts to find the language
options through the package options supplied to tracklang. This means that any languages
that have been supplied in the document class options should get identified (provided that
the document class has used the standard option declaration mechanism). If no languages
have been supplied in this way, tracklang. sty then attempts to identify language settings
in the following order:

1. if \bbl@loaded is defined (babel), tracklang will iterate over each label in that com-
mand definition;

2. if \trans@languages is defined (translator), tracklang will iterate over each label in
that command definition;

3. if ngerman has been loaded, the ngerman dialect will be tracked;
4. if german has been loaded, the german root language will be tracked;

5. if polyglossia has been loaded:

a) if \xpg@bcp@loaded has been defined, tracklang will iterate over the BCP 47 tags
in that command definition;

b) if \xpg@loaded has been defined, tracklang will iterate over each language label
in that command definition;

c) tracklang will iterate over all tracklang options and test if the root language has
been loaded.

Note that this references internal commands provided by other packages. Of these, only the
polyglossia commands are documented in the package manual, and so are the only ones that
can be relied on.

Each identified language and dialect is added to the tracked language and tracked dialect
lists. Note that the tracked language and tracked dialect are labels rather than proper nouns.
If a dialect label is identical to its root language label, the label will appear in both lists.

You can check whether or not any languages have been detected using:

\AnyTrackedLanguages{(true)}{(false)}

This will do (true) if one or more languages have been tracked otherwise it will do (false).
(Each detected dialect will automatically have the root language label added to the tracked
language list, if it’s not already present.)

35

5. Detecting the User’s Requested Languages

If you want to find out if any of the tracked dialects matches a particular language tag,
you can use:

X

\GetTrackedDialectFromLanguageTag{(tag)}{(cs)}

If successful, the supplied control sequence (cs) is set to the dialect label, otherwise (cs) is set
to empty. The test is for an exact match on the root language, script, sub-language, variant
and region. The control sequence (cs) will be empty if none of the tracked dialects matches
all five of those elements. (If the script isn’t given explicitly, the default for that language is
assumed.) In the event that (cs) is empty, you can now (as from v1.3.6) get the closest match
with:

X

\TrackedDialectClosestSubMatch

(which is set by \GetTrackedDialectFromLanguageTag). This will be empty if no tracked
dialects match on the root language or if there’s a tracked dialect label that exactly matches
the label formed by concatenating the language code, sub-language, script, region, modifier
and variant.

For example (Plain TEX):

,

\input tracklang

\TrackLanguageTag{en-826}

Has en-Latn-GB been tracked?
\GetTrackedDialectFromLanguageTag{en-Latn-GB}{\thisdialect}/,
\ifx\thisdialect\empty

No!

\else

Yes! Dialect label: \thisdialect.

\fi

\bye

This matches because the territory code 826 is recognised as equivalent to the code GB, and
the default script for english is Latn. In this case, the dialect label is british. Note that
this doesn’t require the use of \TrackLanguageTag to track the dialect. It also works if the
dialect has been tracked using other commands, such as \TrackLocale.

Here’s an example that doesn’t have an exact match, but does have a partial match:

Ei

\input tracklang
\TrackLanguageTag{de-CH-1996}

36

5. Detecting the User’s Requested Languages

Has de-DE-1996 been tracked?
\GetTrackedDialectFromLanguageTag{de-DE-1996}{\thisdialect}%
\ifx\thisdialect\empty
No!
\ifx\TrackedDialectClosestSubMatch\empty
No match on root language.
\else
Closest match: \TrackedDialectClosestSubMatch.
\fi
\else
Yes! Dialect label: \thisdialect.
\fi
\bye

In this case the result is:

Has de-DE-1996 been tracked? No! Closest match: nswissgerman.

You can iterate through each tracked dialect using:

\ForEachTrackedDialect{(cs)}{(body)}

At the start of each iteration, this sets the control sequence (cs) to the tracked dialect and
does (body).

You can iterate through each tracked language using:

\ForEachTrackedLanguage{(cs)}{(body)}

At the start of each iteration, this sets the control sequence (cs) to the tracked language and
does (body).

The above for-loops use the same internal mechanism as EIgX’s \@for loop. Since this
isn’t defined by TgX, a similar command (\@tracklang@for) will be defined that works in
the same way.

The provided control sequence (cs) is updated at the start of each iteration to the current
element. The loop is terminated when this control sequence is set to \@nil. This special
control sequence should never been used as it’s just a marker and isn’t actually defined. If
you get an error message stating that \@nil is undefined, then it’s most likely due to a loop
control sequence being used outside the loop. This can occur if the loop contains code that
isn’t expanded until later. For example, if the loop code includes \AtBeginDocument, you
need to ensure that the loop control sequence is expanded before being added to the hook.

37

5. Detecting the User’s Requested Languages

You can test if a root language has been detected using:

\IfTrackedLanguage{(language-label) }{(true)}{(false)}

where (language-label) is the language label. If true, this does (true) otherwise it does (false).
You can test if a particular dialect has been detected using:

X

\IfTrackedDialect{(dialect-label)}{(true)}{(false)}

where (dialect-label) is the dialect label. If the root language was explicitly specified, then it
will also be detected as a dialect.
For example:

\documentclass[british,dutch]{article}
\usepackage{tracklang}

\begin{document}
““english'' \IfTrackedDialect{english}{has}{hasn't} been specified.

“british'' \IfTrackedDialect{british}{has}{hasn't} been specified.
““flemish'' \IfTrackedDialect{flemish}{has}{hasn't} been specified.
““dutch'' \IfTrackedDialect{dutch}{has}{hasn't} been specified.
““english'' or an English variant

\IfTrackedLanguage{english}{has}{hasn't} been specified.
\end{document}

\.

This produces:

“english” hasn’t been specified.

“british” has been specified.

“flemish” hasn’t been specified.

“dutch” has been specified.

“english” or an English variant has been specified.

38

5. Detecting the User’s Requested Languages

You can find the root language label for a given tracked dialect using:

\TrackedLanguageFromDialect{(dialect)}

If (dialect) hasn’t been defined this does nothing otherwise it expands to the root language
label.
You can find the tracked dialects from a given root language using:

\TrackedDialectsFromLanguage{(root language label)?}

This will expand to a comma-separated list of dialect labels if the root language label has
been defined, otherwise it does nothing.
You can test if a language or dialect has a corresponding ISO code using:

\IfTrackedLanguageHasIsoCode{(code type)}{(label)}{(true)}{(false)}

where (code type) is the type of ISO code (for example, 639-1 for root languages or 3166-1 for
regional dialects), and (label) is the language or dialect label. Note that the 639-3 may be set
for the dialect rather than root language for sub-languages parsed using \TrackLanguage-
Tag.

Alternatively, you can test if a particular ISO code has been defined using:

\IfTrackedIsoCode{(code type)}{(code)}{(true)}{(false)}

where (code type) is again the type of ISO code (for example, 639-1 or 3166-1), and (code) is
the particular code (for example, en for ISO 639-1 or GB for ISO 3166-1).
You can fetch the language (or dialect) label associated with a given ISO code using:

\TrackedLanguageFromIsoCode{(code type)}{(code)}

This does nothing if the given (code) for the given ISO (code type) has not been defined,
otherwise it expands a comma-separated list of language or dialect labels.
You can fetch the ISO code for a given code type using:

\TrackedIsoCodeFromLanguage{(code type)}{(label)}

where (label) is the language or dialect label and (code type) is the ISO code type (for example,
639-1 or 3166-1). Unlike \TrackedLanguageFromIsoCode, this command only expands to

39

5. Detecting the User’s Requested Languages

a single label rather than a comma-separated list.

The above commands do nothing in the event of an unknown code or code type, so if you
accidentally get the wrong code type, you won'’t get an error. If you’re unsure of the code
type, you can use the following commands:

X

\TwoLetterIsoCountryCode

This expands to 3166-1 and is used for the two-letter country codes.

\TwoLetterIsoLanguageCode

This expands to 639-1 and is used for the two-letter root language codes.

\ThreeLetterIsoLanguageCode

This expands to 639-2 and is used for the three-letter root language codes.

\ThreeLetterExtIsoLanguageCode

This expands to 639-3. This code is only used for a root language if there’s no 639-1 or 639-2
code. It may also be used for a dialect if a sub-language part has been set in the language tag
parsed by \TrackLanguageTag.

The \Get.. commands below are designed to be expandable. If the supplied (dialect) is
unrecognised they expand to empty. Remember that the dialect must first be identified as a
tracked language for it to be recognised.

As from v1.3, the language tag for a given dialect can be obtained using:

\GetTrackedLanguageTag{(dialect)}

where (dialect) is the label identifying the dialect. Uses the und (undetermined) code for
unknown languages.

As from v1.3, each tracked dialect may also have an associated modifier, which can be
fetched using:

X

\GetTrackedDialectModifier{(dialect)}

where (dialect) is the label identifying the dialect. This value is typically obtained by pars-
ing a POSIX locale identifier with \TrackLocale or \TrackLangFromEnv but may be set

40

5. Detecting the User’s Requested Languages

explicitly. (See §6 for setting this value. Likewise for the following commands.)
You can test if a dialect has an associated modifier using:

\IfHasTrackedDialectModifier{(dialect)}{(true)}{(false)}

If the dialect has an associated modifier this does (true) otherwise it does (false).
For example:

\documentclass[british,francais,american,canadian,canadien,dutch]
{article}

\usepackage{tracklang}

\begin{document}

Languages:
\ForEachTrackedLanguage{\ThisLanguage}{\ThisLanguage\space
(IS0 \TwoLetterIsoLanguageCode:

" “\TrackedIsoCodeFromLanguage{\TwoLetterIsoLanguageCode}
{\ThisLanguage}''). }

Dialects:
\ForEachTrackedDialect{\ThisDialect}{\ThisDialect\space
(\IfTrackedLanguageHasIsoCode{\TwoLetterIsoCountryCode}
{\ThisDialect}/

{IS0 \TwoLetterIsoCountryCode:

" “\TrackedIsoCodeFromLanguage{\TwoLetterIsoCountryCode}

{\ThisDialect}''} {no specific region};

root: \TrackedLanguageFromDialect{\ThisDialect}). }

Language for ISO \TwolLetterIsoCountryCode\ ~“GB'':
\TrackedLanguageFromIsoCode{\TwoLetterIsoCountryCode}{GB}.

Language for ISO \TwolLetterIsoCountryCode\ ~“CA'':
\TrackedLanguageFromIsoCode{\TwoLetterIsoCountryCode}{CA}.

Country IS0 \TwoLetterIsoCountryCode\ code for ~~canadian'':
\TrackedIsoCodeFromLanguage{\TwoLetterIsoCountryCode}{canadian}.
\end{document?}

This produces:

41

5. Detecting the User’s Requested Languages

Languages: english (ISO 639-1: “en”). french (ISO 639-1: “fr”). dutch (ISO 639-1: “nl”).
Dialects: american (ISO 3166-1: “US”; root: english). british (ISO 3166-1: “GB”; root:
english). canadian (ISO 3166-1: “CA”; root: english). canadien (ISO 3166-1: “CA”;
root: french). dutch (no specific region; root: dutch). francais (no specific region;
root: french).

Language for ISO 3166-1 “GB”: british.

Language for ISO 3166-1 “CA”: canadian,canadien.

Country ISO 3166-1 code for “canadian”: CA.

As from v1.3, each tracked dialect may also have an associated variant, which can be
fetched using:

—

X

\GetTrackedDialectVariant{(dialect)?}

where (dialect) is the label identifying the dialect. This value is typically obtained by parsing
a language tag with \TrackLanguageTag but may be set explicitly.
You can test if a dialect has an associated variant using:

\IfHasTrackedDialectVariant{(dialect)}{(true)}{(false)}

As from v1.3, each tracked dialect may also have an associated script, which can be fetched
using:

b §
\GetTrackedDialectScript{(dialect)}
where (dialect) is the label identifying the dialect.
You can test if a dialect has an associated script using:
X

\IfHasTrackedDialectScript{(dialect)}{(true)}{(false)}

If the dialect has an associated script this does (true) otherwise it does (false). This informa-
tion is provided for language packages that need to know what script is required, but there’s
no guarantee that the script will actually be set in the document. Similarly for all the other
attributes described here.

Note that the script should be a recognised four-letter ISO 15924 code, such as Latn or
Cyrl. If a dialect doesn’t have an associated script then the default for the root language
should be assumed. For example, Latn for English dialects or Cyr1l for Russian dialects. The

42

5. Detecting the User’s Requested Languages

default script for known languages can be obtained using:

\TrackLangGetDefaultScript{(language)}

Most root languages have a default script, but there are a few without one as it may depend
on region, politics or ideology.
There’s a convenient expandable command for testing the script:

\IfTrackedDialectIsScriptCs{(dialect)}{(cs)}{(true)}{(false)}

This tests if the given tracked dialect has an associated script and compares the value with
the replacement text of (cs). If the dialect hasn’t been explicitly assigned a script, then test
is performed against the default script for the root language.

The supplementary package tracklang-scripts provides some additional commands relat-
ing to writing systems, including commands in the form \TrackLangScript(Code) where
(Code) is the ISO 15924 four-letter code. If the dialect doesn’t have an associated script,
(false) is done. This package isn’t loaded automatically, so you’ll need to explicitly load it.
The generic code is in tracklang-scripts.tex:

Ei

\input tracklang-scripts

There’s a convenient BTEX wrapper tracklang-scripts.sty:

[\usepackage{tracklang-scripts}

See §4 for further details of that package.
For example, the following defines a command to check if the given dialect should use a

Latin script:

\input tracklang-scripts

\def\islatin#1#2#3{7,
\IfTrackedDialectIsScriptCs{#1}{\TrackLangScriptLatn}{#2}{#3}/

}

[i
L
Note that the script value doesn’t mean that the document is actually using that script.

It means that this is the user’s desired script, but whether that script is actually set relies

43

5. Detecting the User’s Requested Languages

on the appropriate settings in the relevant language package (such as polyglossia’s
script key).

As from v1.3, each tracked dialect may also have a sub-language identifier (for example,
arevela), which can be fetched using:

X

\GetTrackedDialectSubLang{(dialect)}

where (dialect) is the label identifying the dialect.
You can test if a dialect has an associated sub-tag using:

\IfHasTrackedDialectSubLang{(dialect)}{(true)}{(false)}

If the dialect has an associated sub-tag this does (true) otherwise it does (false).
As from v1.3, each tracked dialect may also have additional information, which can be
fetched using:

X

\GetTrackedDialectAdditional{(dialect)}

where (dialect) is the label identifying the dialect.
You can test if a dialect has additional information using:

\IfHasTrackedDialectAdditional{(dialect)}{(true)}{(false)}

If the dialect has additional information this does (true) otherwise it does (false).

Most packages that implement multilingual support have a set of language definition files
for each supported language or dialect. It may be that only the root language is needed, if
there are no variations between that language’s dialect (for the purposes of that package),
or it may be that separate definition files are required for each dialect. However it can be
awkward trying to map the requested dialect or language label to the file name. Should, say,
the file containing the French code be called (prefix)-french-(suffix) or (prefix)-frenchb
- (suffix) or (prefix)-francais-(suffix)? Should, say, the file containing the British English
code be called (prefix)-british-(suffix) or (prefix)-UKenglish-(suffix)? If you want to
modularise the language support for your package so that each language module has a dif-
ferent maintainer will the maintainers know what tag to use for their language?

44

5. Detecting the User’s Requested Languages

To help with this, tracklang provides:

\IfTrackedLanguageFileExists{(dialect)}{ (prefix)} (suffix)}{(true
code) } (false code)}

This attempts to find the file called (prefix)(localeid) (suffix) where (localeid) is determined
from (dialect) (see below). If the file is found then

X

\CurrentTrackedTag

is set to (localeid) and (true code) is done, otherwise (false code) is done. If this command is

empty, then the dialect hasn’t been detected. If the dialect has been detected, but no file can

be found, then \CurrentTrackedTag is set to the final attempt at determining (localeid).
There’s a convenient shortcut command new to version 1.3:

X

\TrackLangRequireDialect [(load code)]{(pkgname)}{(dialect)}

which uses \IfTrackedLanguageFileExists to input the resource file if found. The prefix
is given by (pkgname)- and the suffix is .1df. A warning is issued if no resource file is
found. Note that while it makes sense for (pkgname) to be the same as the base name of
the package that uses these resource files, they don’t have to be the same. This command
additionally defines:

X

\TrackLangRequireDialectPrefix

to (pkgname), which allows the prefix to be picked up by resource file commands, such as
\TrackLangProvidesResource and \TrackLangRequireResource. (See below.)
The optional argument (load code) is the code that actually inputs the required file. This

defaults to

The \IfTrackedLanguageFileExists command sets up the current tracked dialect with:

\TrackLangRequireResource{\CurrentTrackedTag}

\SetCurrentTrackedDialect{dialect}

45

5. Detecting the User’s Requested Languages

which enables the following commands that may be used within (true code) or (false code):

X

\CurrentTrackedDialect

Expands to the dialect label.

\CurrentTrackedLanguage

If the dialect hasn’t been detected, this command will be empty, otherwise it will expand to
the root language label (which may be the same as the dialect label).

)

X

\CurrentTrackedRegion

If the dialect hasn’t been detected, this command will be empty. If the dialect has been
assigned an ISO 3166-1 code, \CurrentTrackedRegion will expand to that code, otherwise
it will be empty:.

X

\CurrentTrackedIsoCode

If the dialect hasn’t been detected, this command will be empty. Otherwise it may be empty
or it may expand to the ISO 639-1 or ISO 639-2 or ISO 639-3 code.

e

X

\CurrentTrackedDialectModifier

The dialect’s modifier or empty if not set. (This is set but not used in the set of possible
(localeid) values.)

b §
\CurrentTrackedDialectVariant
The dialect’s variant or empty if not set.
b §
\CurrentTrackedDialectSubLang
The dialect’s sub-language code or empty if not set.
b §

\CurrentTrackedDialectAdditional

46

5. Detecting the User’s Requested Languages

The dialect’s additional information or empty if not set.

\CurrentTrackedLanguageTag

The dialect’s language tag. Take care not to confuse this with \CurrentTrackedTag.

\CurrentTrackedDialectScript

The dialect’s script. If the dialect doesn’t have the script set, the default script for the language
is used instead.
\IfTrackedLanguageFileExists behaves as follows:

« If no dialect with the given label has been detected, the condition evaluates to false
and \CurrentTrackedTag is empty.

« If a dialect with the given label has been detected, then:

— For each possible (localeid) in an ordered set of tags determined by the dialect
label (see below), the first file matching (prefix)(localeid) (suffix) that’s found on
TgX’s path results in the condition evaluating to true and \CurrentTrackedTag
is set to the current (localeid) in the set. The rest of the set of possible values of

(localeid) is skipped.

- If no file matching (prefix) (localeid) (suffix) is found on TgX’s path, then the con-
dition evaluates to false and \CurrentTrackedTag is set to the final (localeid)
in the set (the language label).

The ordered set of possible values of (localeid) is determined from the given dialect.

i
The ordering has changed in version 1.4, which now also includes the script and
variant. This new ordering should typically make the more common combinations
closer to the start of the search.

The possible values of (localeid) are listed below in the order of priority used by \If-
TrackedLanguageFileExists. Note that the set may contain repetitions (for example, if
the dialect label is the same as the root language label). If an item contains an element that
hasn’t been set (such as the ISO 639-3 code or a sub-language (sublang) or variant) then that
item is skipped.

1. (localeid) is just the value of \CurrentTrackedLanguageTag.
2. (localeid) is just the dialect label.

3. (localeid) is (ISO 639-1)-(sublang)-(script)-(region).

47

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

5. Detecting the User’s Requested Languages

(localeid) is (ISO 639-1)~(script)—(region).

(localeid) is (ISO 639-1)-(sublang)-(region) (if there’s no script or if the script is the
default for the given language). (ISO 639-1)-(region) (if there’s no script or if the script
is the default for the given language).

localeid

is (ISO 639-1)~(sublang)-(script).
localeid) is (ISO 639-1)~(script).

)
)
localeid) is (ISO 639-1)-(sublang).
localeid) is just (ISO 639-1).
) is (ISO 639-2)-(sublang)-(script)-(region).
) is (ISO 639-2)~(script)—(region).

localeid

(
{
{
(
{
(localeid
(localeid) is (ISO 639-2)-(sublang)-region (if there’s no script or if the script is the
default for the given language). (ISO 639-2)~-(region) (if there’s no script or if the script

is the default for the given language).
localeid) is (ISO 639-2)-(sublang)-{script).
localeid) is (ISO 639-2)-(script).

)
)
localeid) is (ISO 639-2)-(sublang).
localeid) is just (ISO 639-2).
)
)

localeid) is (ISO 639-3)-(sublang)-(script)—(region).
localeid) is (ISO 639-3)-(script)-(region).

{
{
{
{
{
{

(localeid) is (ISO 639-3)-(sublang)-(region) (if there’s no script or if the script is the
default for the given language). (ISO 639-3)-(region) (if there’s no script or if the script

is the default for the given language).
localeid) is (ISO 639-3)-(sublang)-(script).
localeid) is (ISO 639-3)~(script).
localeid) is (ISO 639-3)-(sublang).
localeid) is just (ISO 639-3).
localeid) is just (region).

)

{
{
{
{
{
{

localeid) is (ISO 639-1)~(sublang)-(variant) or (ISO 639-1)-(variant) if (sublang) is
missing.

48

5. Detecting the User’s Requested Languages
26. (localeid) is (ISO 639-2)~(sublang)-(variant) or (ISO 639-2)~(variant) if (sublang) is
missing.

27. (localeid) is (ISO 639-3)-(sublang)-(variant) or (ISO 639-3)-(variant) if (sublang) is
missing.

28. (localeid) is just the value of \CurrentTrackedLanguage (the root language label).

For example (pre v1.3):

\AnyTrackedLanguages
{h

\ForEachTrackedDialect{\ThisDialect}%

{% try to load the language file for this dialect
\IfTrackedLanguageFileExists{\ThisDialect}/
{mypackage-1}7 file prefix
{.1df}) file suffix
{\input mypackage-\CurrentTrackedTag.1ldf}), file found
{% file not found

\PackageWarning{mypackage}{No support for language
“\ThisDialect '}/

By
3
i
{% no languages detected so use defaults
+

With version 1.3 onwards, this can be written more concisely as:

\AnyTrackedLanguages
{h
\ForEachTrackedDialect{\ThisDialect}%
{% try to load the language file for this dialect
\TrackLangRequireDialect{mypackage}{\ThisDialect}/,

Y
}
{% no languages detected so use defaults
}

which additionally enables the tracklang version 1.3 commands described below, such as

\TrackLangRequireResource.
If, for example, \ThisDialect is british, then the file search will be in the order:

1. mypackage-en-GB.1df (language tag)

49

10.

11.

12.

5. Detecting the User’s Requested Languages

mypackage-british.1df (dialect label)
mypackage-en-Latn-GB.1df (639-1 language code, script, region)
mypackage-en-GB.1df (639-1 language code, region)
mypackage-en-Latn.1ldf (639-1 language code, script)

mypackage-en.1ldf (639-1 language code)

. mypackage-eng-Latn-GB.1df (639-2 language code, script, region)

. mypackage-eng-GB.1df (639-2 language code, region)

mypackage-eng-Latn.1df (639-2 language code, script)
mypackage-eng.1df (639-2 language code)
mypackage-GB.1df (region)

mypackage-english.1df (language label)

If, for example, \ThisDialect is naustrian, then the file search will be in the order:

1.

2.

10.

11.

12.

13.

14.

mypackage-de-AT-1996.1df (language tag)

mypackage-naustrian.ldf (dialect label)

. mypackage-de-Latn-AT.1df (639-1 language code, script, region)

mypackage-de—AT.1df (639-1 language code, region)

. mypackage-de-Latn.1df (639-1 language code, script)

mypackage-de.1ldf (639-1 language code)
mypackage-deu-Latn-AT.1df (639-2 language code, script, region)
mypackage-deu-AT.1df (639-2 language code, region)
mypackage-deu-Latn.1df (639-2 language code, script)
mypackage-deu. 1df (639-2 language code)

mypackage-AT.1df (region)

mypackage-de-1996.1df (639-1 language code, variant)
mypackage-deu-1996.1df (639-2 language code, variant)

mypackage-german. 1df (language label)

50

5. Detecting the User’s Requested Languages

If, for example, \ThisDialect is francais, then the file search will be in the order:
1. mypackage-fr.1df (language tag)
2. mypackage-francais.1ldf (dialect label)
3. mypackage-fr-Latn.1df (639-1 language code, script)
4. mypackage-fr.1df (639-1 language code)
5. mypackage-fra-Latn.1ldf (639-2 language code, script)
6. mypackage-fra.ldf (639-2 language code)
7. mypackage-french.1df (language)

This is because the predefined francais option has no region assigned to it. Be careful if
the dialect label is the actual root language. For example, if \ThisDialect is french, then
the file search will be in the order:

1. mypackage-fr.1df (language tag)

2. mypackage-french.1df (dialect label)

3. mypackage-fr-Latn.1df (639-1 language code, script)
4. mypackage-fr.1df (639-1 language code)

5. mypackage-fra-Latn.1ldf (639-2 language code, script)
6. mypackage-fra.ldf (639-2 language code)

7. mypackage-french.1ldf (language)

Note that the last try will always fail in this case since if the file exists, it will be found on
the second try.

If the dialect label is identical to the root language label then it means that all associated
information is the default for that language. For example, in the above case of french, the
script is Latn and the region is unspecified. The root language label can therefore be used
as the fallback in the event of no other match but for the specific case where the dialect is
identical to the root language then all unnecessary file name checks can be skipped.

If you’re only providing support for the root languages (pre v1.3):

\AnyTrackedLanguages
Lk
\ForEachTrackedLanguage{\ThisLanguagel}’
{% try to load the language file for this root language

\IfTrackedLanguageFileExists{\ThisLanguagel},

51

5. Detecting the User’s Requested Languages

{mypackage-1}/, file prefix
{.1df}), file suffix
{\input mypackage-\CurrentTrackedTag.1ldf}), file found
{% file not found
\PackageWarning{mypackage}{No support for language
“\ThisLanguage'}/

by
3
i
{% no languages detected so use defaults
+

With version 1.3 onwards, this can be written more concisely as:

\AnyTrackedLanguages
{h
\ForEachTrackedLanguage{\ThisLanguagel}’
{% try to load the language file for this root language
\TrackLangRequireDialect{mypackage}{\ThisLanguage},

Y
}
{% no languages detected so use defaults
}

which additionally enables the commands described below. Note that in this case, if more
than one dialect for the same language has been tracked, only the hooks for the last dialect
for that language will be adjusted, so it’s usually best to iterate over the dialects.

The following \TrackLang..Resource.. commands may only be used in resource files
that are loaded using \TrackLangRequireDialect. An error will occur if the file is input
through some other method.

Within the resource file (pkgname)-(localeid) .1df, you can identify the file using (new
to version 1.3):

X

\TrackLangProvidesResource{(tag)} [(version info)]

where (tag) is the locale identifier.

If \ProvidesFile is defined (through the KIgX kernel) this is used, otherwise a simplified
generic alternative is used that’s suitable for other TgX formats.

The resource file can load another resource file (pkgname)-(tag) .1df, using (new to ver-

52

5. Detecting the User’s Requested Languages

sion 1.3):

\TrackLangRequireResource{(tag)?}

For example, the dialect file foo-en-GB. 1df might need to load the root language resource

file foo-english.1df:

% (In file foo-en-GB.1ldf)

% Declare this regional file:
\TrackLangProvidesResource{en-GB}

% load root language file foo-english.1ldf:
\TrackLangRequireResource{english}

If foo-english.1df is also identified with \TrackLangProvidesResource, this will ensure
that it’s only loaded once.

It may be that you want to load a file depending on the input encoding. The inputenc
package defines \inputencodingname, but this is only used with pdfE{TgX. To avoid repeated
tests to determine whether or not \inputencodingname has been defined, you can use:

X

\TrackLangEncodingName

This will expand to utf8 if \inputencodingname hasn’t been defined, otherwise it will
expand to \inputencodingname. For example:

\InputIfFileExists{foo-\TrackLangEncodingName.1ldf}
{% support available for the document encoding

}

{% no support for the document encoding

b

If you require the resource file and want to perform (codel) if it’s loaded at this point or
(code2) if it’s already been loaded then you can use:

X

\TrackLangRequireResource0rDo{(tag)}{(codel)}{(code2)}

If you want to load a resource file if it exists (without an error if it doesn’t exist), then you

53

5. Detecting the User’s Requested Languages

can use

\TrackLangRequestResource{(tag)}{(not found code)}

If the file doesn’t exist, (not found code) is done.
[i
=

Note that these \..Resource.. commands are only permitted within the resource files.
They are internally enabled through \TrackLangRequireDialect.

The above restriction on the resource files loaded through \TrackLangRequireDialect,
and the fact that it internally uses \IfTrackedLanguageFileExists, means that commands
like \CurrentTrackedLanguage or \CurrentTrackedDialect may be used in those files.
This means that the name of the captions hook can be obtained through them. (Remember
that the file foo-en-GB.1df might have been loaded with, say, the british dialect or with
the synonymous UKenglish dialect or with a dialect label that doesn’t have a corresponding
caption hook, such as enGBLatn.)

The polyglossia package has language caption hooks in the form \captions(language)
(where (language) is the root language label) whereas babel has dialect captions hooks in
the form \captions(dialect) (where (dialect) is the dialect label). This leads to a rather
cumbersome set of conditionals:

\ifcsundef{captions\CurrentTrackedLanguage}
{
\ifcsundef{captions\CurrentTrackedDialectl}/
{3
{h
\csgappto{captions\CurrentTrackedDialect}{/
% code to append to hook
Yh
Yh
+h
Lk
\csgappto{captions\CurrentTrackedLanguage}{/
% code to append to hook
Yh
}

% do code now to initialise

.

Note that the above has been simplified through the use of etoolbox commands, which isn’t
suitable for generic use. It also doesn’t query the mapping from tracklang’s dialect label to
the closest matching babel dialect label.

Instead, tracklang provides a command to perform this set of conditionals using generic

54

5. Detecting the User’s Requested Languages

code:

\TrackLangAddToHook{(code)}{(type)}

where (code) is the code to append to the (type) hook. This always performs (code) after
testing for the hook in case the hook is undefined or has already been called (for example,
ngerman uses \captionsngerman when the package is loaded, not at the start of the docu-
ment).

Note that this command is enabled through \TrackLangRequireDialect so should only
be used inside resource files.

Since captions is a commonly used hook type, there’s a shortcut command provided:

X

\TrackLangAddToCaptions{(code)?}

This is equivalent to

~

\TrackLangAddToHook{(code)}{captions}

There may be some hooks, such as \date(dialect), that need redefining rather than ap-
pending to, so there’s an analogous command:

X

\TrackLangRedefHook{(code)}{(type)}

which will redefined the hook to do (code).
Note that no expansion is performed on (code) when appending or redefining a hook.

5.1. Examples

The examples in this section illustrate the above commands.

5.1.1. animals.sty

This example is for a trivial package called animals.sty that defines three textual com-
mands: \catname, \dogname and \ladybirdname. The default values are: “cat”, “dog” and
“bishy-barney-bee”.! The supported languages are defined in files animals-(localeid) . 1df.

Here’s the code for animals.sty:

Thass Broad Norfolk, my bewties : =P

55

5. Detecting the User’s Requested Languages

% Example package animals.sty
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{animals}

\RequirePackage{tracklang}[2019/11/30]% v1.4
% Any undeclared options are language settings:

\DeclareOption*{J
\TrackIfKnownLanguage{\CurrentOption}y
{% successful
\PackageInfo{animals}{Tracking language ~\CurrentOption'}J
Y
{% failed
\PackageError{animals}/,
{Unknown language specification ~\CurrentOption'}J
{You need to supply either a known dialect label
or a valid language tagltl
Y
}

\ProcessOptions

% Default definitions
\newcommand\catname{cat}
\newcommand\dogname{dog}
\newcommand\ladybirdname{bishy-barney-bee}

\AnyTrackedLanguages
{%
\ForEachTrackedDialect{\this@dialect}{%
\TrackLangRequireDialect{animals}{\this@dialect}’
T
+
{% no tracked languages, default already set up

}

\endinput

56

Here’s a Plain TgX version that picks up the language from the locale environment variable:

5. Detecting the User’s Requested Languages

\input tracklang
\TrackLangFromEnv

% Default definitions
\def\catname{cat}

\def\dogname{dog}
\def\ladybirdname{bishy-barney-bee}

\AnyTrackedLanguages
{0
\ForEachTrackedDialect{\thisdialect}{’
\TrackLangRequireDialect{animals}{\thisdialect}),

Y
}
{% no tracked languages, default already set up
}

In the event that a user or supplementary package for some reason wants to load a resource
file for a language that hasn’t been tracked, it might be worth providing a command for this
purpose:

=

\newcommand*{\RequireAnimalsDialect} [1]{’
\TrackLangRequireDialect{animals}{#1}J,
}

The loop can then be changed to

\ForEachTrackedDialect{\this@dialect}{’%
\RequireAnimalsDialect\this@dialect

By

The animals-english.1df file valid for both the Plain TgX and EIEX formats contains:

\TrackLangProvidesResource{english}

\def\englishanimals{
\def\catname{cat}/
\def\dogname{dog}’

57

5. Detecting the User’s Requested Languages

\def\ladybirdname{bishy-barney-bee},
}

\TrackLangAddToCaptions{\englishanimals}

The animals-en-GB. 1df file contains:

\TrackLangProvidesResource{en-GB}
\TrackLangRequireResource{english}

\def\enGBanimals{/,
\englishanimals
\def\ladybirdname{ladybird}/,
¥
\TrackLangAddToCaptions{\enGBanimals}

The animals-en-US. 1df file contains:

\TrackLangProvidesResource{en-US}
\TrackLangRequireResource{english}

\def\enUSanimals{/
\englishanimals
\def\ladybirdname{ladybugl}’
}
\TrackLangAddToCaptions{\enUSanimals}

Here’s a German version in the file animals-german.1df:

\TrackLangProvidesResource{german}

\def\germananimals{J
\def\catname{Katzel}J,
\def\dogname{Hund}/
\def\ladybirdname{Marienk\"afer}/

}

\TrackLangAddToCaptions{\germananimals}

This means that if babel or polyglossia are loaded, the redefinitions are automatically per-

58

5. Detecting the User’s Requested Languages

formed whenever the language is changed, but if there’s no caption mechanism the user can
switch the fixed names using the \..animals commands.

Here’s an example EIEX document that doesn’t have any caption hooks:

\.

\documentclass[english,german] {article}
\usepackage{animals}

\begin{document}
\englishanimals

\catname.
\dogname .
\ladybirdname.

\germananimals

\catname.
\dogname .
\ladybirdname.
\end{document}

Here’s a babel example document:

\documentclass[american,german,british]{article}

\usepackage{babel}
\usepackage{animals}

\begin{document}
\selectlanguage{american}

\catname.

\dogname .
\ladybirdname.
\selectlanguage{german}
\catname.

\dogname .
\ladybirdname.

59

5. Detecting the User’s Requested Languages

\selectlanguage{british}

\catname.
\dogname .
\ladybirdname.
\end{document}

There is some redundancy with the above resource files. Consider the babel example above.
The american dialect is the first option, so in that case animals-en-US.1df is loaded fol-
lowed by animals-english.1df. This means that the \captionsamerican hook now in-
cludes

=

\englishanimals
\enUSanimals

Since \enUSanimals includes \englishanimals, there is redundant code. However, when
the british dialect is processed, this loads the file animals-en-GB.1df but not the file
animals-english.1df (sinceit’s already been loaded). This means that \captionsbritish
contains \enGBanimals but not \englishanimals.

If this redundancy is an issue (for example, there are so many redefinitions needed that it
significantly slows the document build process), then it can be addressed with the following
modifications. The animals-en-GB.1df file is now:

\TrackLangProvidesResource{en-GB}

\def\enGBanimals{}
\englishanimals
\def\ladybirdname{ladybird}J

}

\TrackLangRequireResourceOrDo{english}
{

\TrackLangAddToCaptions{’

\def\ladybirdname{ladybird}J

Y
}
{

\TrackLangAddToCaptions{\enGBanimals}
}

The animals-en-US. 1df file is now:

60

5. Detecting the User’s Requested Languages

\TrackLangProvidesResource{en-US}

\providecommand*{\enUSanimals}{J
\englishanimals
\renewcommand*{\ladybirdname}{ladybug}’

}

\TrackLangRequireResourceOrDo{english}

{
\TrackLangAddToCaptions{’

\renewcommand*{\ladybirdname}{ladybird}’

Yh

}

{
\TrackLangAddToCaptions{\enUSanimals}

}

This means that the document that has the dialects listed in the order american, british
now has

=

\englishanimals
\def\ladybirdname{ladybird}

in the \captionsbritish hook and just \enUSanimals in the \captionsamerican hook,
which has removed most of the redundancy.

Note that polyglossia has a \captionsenglish hook but not \captionsamerican or
\captionsbritish, so this code doesn’t allow for switching between variants of the same
language with polyglossia.

5.1.2. regions.sty

Earlier on page 49, I mentioned the search order for \IfTrackedLanguageFileExists
where if, for example, the dialect is british, the file search (v1.4+) will be:

1. mypackage-en-GB.1df (language tag)

2. mypackage-british.1df (dialect label)

3. mypackage-en