o
"I’ITAN

Programmers' Technical Reference
Guide for the TITAN TTCN-3 Toolset

Jend Balasko

Version 10.1.0, 2024-04-25

Table of Contents

1. About the Document

1.1. Purpose
1.2. Target Groups
1.3. Typographical Conventions

2. TTCN-3 Limitations in this Version
3. Clarifications to the TTCN-3 Standard

3.1. Predefined Function Identifiers

3.2. Meaning of any and all

3.3. Response and Exception Handling Parts
3.4. Variable Lists in param Redirect

3.5. References between Language Elements
3.6. Encoding Rules

3.7. Address Type

3.8. Importing import Statement from TTCN-3 Modules

3.9. Description of Behavior Types Syntax
3.10. Partially initialized structure values
3.11. Concatenation of templates

3.12. The predefined function replace
3.13. The execution of an altstep

3.14. ASN.1 extension additions

4. TTCN-3 Language Extensions

4.1. Syntax Extensions

4.2. Visibility Modifiers

4.3. The anytype

4.4. Ports and Test Configurations

4.5. Parameters of create Operation

4.6. Altsteps and Defaults

4.7. Interleave Statements

4.8. Logging Disambiguation

4.9. Value Returning done

4.10. Dynamic Templates

4.11. Template Module Parameters

4.12. Predefined Functions

4.13. Additional Predefined Functions

4.14. Exclusive Boundaries in Range Subtypes
4.15. Special Float Values Infinity and not_a_number
4.16. TTCN-3 Preprocessing

4.17. Parameter List Extensions

O 00 00 00 N 9 N0 W N DD DN

W W W W W N DN DN DN DN DN DNDDNDNDN R == = = e = = s
© 00 00 00 DN W 00 0 O = b W N DM O 0 O O U1 b W W N N = O

4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32
4.33.
4.34.
4.35
4.36.
4.37.
4.38.
4.39.
4.40.
4.41
4.42.

function, altstep and testcase References
Function Types with a RunsOn_self Clause
TTCN-3 Macros

Component Type Compatibility

Implicit Message Encoding

RAW Encoder and Decoder

TEXT Encoder and Decoder

XML Encoder and Decoder

JSON Encoder and Decoder

OER Encoder and Decoder

PER Encoder and Decoder

Build Consistency Checks

Negative Testing

Testcase Stop Operation

. Catching Dynamic Test Case Errors

Lazy Parameter Evaluation

Differences between the Load Test Runtime and the Function Test Runtime
. Profiling and code coverage

Defining enumeration fields with values known at compile time

Ports with translation capability
Real-time testing features
Object-oriented features

Default alternatives of union types

. Advanced matching

Logging sensitive data

5. Supported ASN.1 Constructs and Limitations
6. Compiling TTCN-3 and ASN.1 Modules

6.1. Command Line Syntax

6.2. The Compilation Process for TTCN-3 and ASN.1 Modules

6.3. Particularities of ASN.1 Modules

6.4. Using Component Relation Constraints from TTCN-3

7. The Run-time Configuration File
7.1. [MODULE_PARAMETERS]
7.2. [LOGGING]

7.3. [TESTPORT_PARAMETERS]
7.4. [DEFINE]

7.5. [INCLUDE]

7.6. [ORDERED_INCLUDE]

7.7. [EXTERNAL_COMMANDS]

7.8. [EXECUTE]

7.9. [GROUPS] (Parallel mode)

40

40

43

45

47

65
124
132
155
201
201
203
207
226
226
228
229
235
241
242
245
247
255
256
257
259
261
261
286
288
290
293
293
298
326
327
332
333
334
335
336

7.10. [COMPONENTS] (Parallel mode) 337

7.11. [MAIN_CONTROLLER] (Parallel mode) 338
7.12. [PROFILER] 339
7.13. Dynamic Configuration of Logging Options 344
8. The TITAN Project Descriptor File 348
8.1. Project Name 350
8.2. Referenced Projects 350
8.3. Files and Folders 351
8.4. Path Variables 352
8.5. ActiveConfiguration 352
8.6. Configurations 353
8.7. Packed Referenced Projects 362
8.8. Important Information, Limitations 366
9. XSD to TTCN-3 Converter 368
9.1. Terminology 368
9.2. Schema Component 368
9.3. Command-line Syntax 368
9.4. The Compilation Process for XML Schema 370
9.5. Restrictions 374
9.6. Extensions 374
10. Code Coverage of TTCN-3 Modules 376
10.1. Generating Code Coverage 376
10.2. Converting Code Coverage Data from XML to HTML 377
10.3. Command Line Syntax of tcov2lcov 377
10.4. Limitations 378
11. The TTCN-3 Debugger 379
11.1. Gathered information 379
11.2. Breakpoints 380
11.3. User interface and list of commands 381
11.4. Example 390
12. Tips & Troubleshooting 395
12.1. Type Aliasing 395
12.2. Reusing Logged Values or Templates in TTCN-3 Code 395
12.3. Using the TTCN-3 Preprocessing Functionality 396
12.4. More Efficient Implementation of the Types record of and set of 397
12.5. Workflow for Native XML Support 397
12.6. Debug Memory Use of Record/set of Types 404
12.7. Parsing limitations 405
13. References 407

14. Abbreviations 409

Abstract

This document describes detailed information on writing components of executable test suites for
the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2024 Ericsson Telecom AB.

All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose

The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites.

1.2. Target Groups

This document is intended for programmers of TTCN-3 test suites with information in addition to
that provided in the TITAN User Guide. It is recommended that the programmer reads the TITAN
User Guide before reading this document.

1.3. Typographical Conventions

This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+’ to represent key combinations. For example, Ctrl+Click

The character "/' is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLD).

Chapter 2. TTCN-3 Limitations in this
Version

The present Test Executor is an implementation of TTCN-3 Core Language standard ([1]) with
support of ASN.1 ([3]). However, the following TTCN-3 language constructs are not supported in the
current version of the Test Executor. When applicable, the relevant clause of the standard text ([1])
is given within parentheses after each limitation. The list of ASN.1 related limitations can be found
in chapter 4.25.

« C++ code generation for parameterized local templates is not supported."” (5.0, relevant cells of
Table 1)
» Parameterized TTCN-3 record, set and union types. (5.41in [1]))

* TTCN-3 sub-typing constraints are checked only at compilation time. In the run-time
environment the restricted types are substituted with the corresponding base type and no run-
time error is produced if the assigned value violates the subtype constraint.

* The special TTCN-3 type anytype is supported with restrictions. (6.2.6 in [1])
« Type compatibility of structured types.” (6.3 in [1])

* Two (non-empty) component types are considered to be compatible only if the compatibility
relation is explicitly specified by the test suite writer. Details can be found in section 4.21. (6.3.3
and 9.3 in [1])

« Selective import statements. All TTCN-3 imports are treated as import all.”’ (8.2.3 and F.2 in [1])

» Type address must not be an external type specified outside TTCN-3. The special value null
cannot be assigned to variables of type address. (9.6 in [1])

* The compiler does not check whether a TTCN-3 function invoked from within a template,
Boolean guard expression of an alt construct, local variable initializer of an altstep or an
interleave statement has side-effects. The run-time behavior is undefined if a function with
side-effects (e.g. communication operations) is called while one of the above statements is being
executed. (20 in [1])

» The disconnect and unmap operations cannot refer to multiple connections or mappings. (21.1.2,
relevant parts in [1])

* The send and call operations cannot be used for multicast or broadcast communication. (22.2.1
and 22.3.1in [1])

* Attributes of type definitions cannot be changed when they are being imported. (27.1.2.1 in [1])

» Template instances cannot be used in the to clause of communication operations. Only values of
component and address types are allowed. (stated only in BNF)

* The additional predefined function decomp is not implemented. (D.2 of [3])

* In port type definitions the list of incoming and outgoing message types or signatures must be
explicitly specified, the all keyword is ignored by the compiler. (G.3 in [1])

* The TTCN-3 and ASN.1 modules are identified only by their names. Object identifiers in module
headers are ignored. Module object identifiers in import statements and references are skipped
without any checking, the semantic analyzer uses the module identifier only. (7.2.3 of [3], 8.1 in

(1D

The comparison operators do not work on objid values. Only the equality (==) and non-equality
(!=) operators are allowed. (7.2.5.2 of [3], 7.1.3 in [1])

Templates can not be used in the parameter of encvalue built-in function. (C.38 in [1])

The declaration of object identifiers can only point to constant values and integer variables,
references to objid variables are not supported.

The Configuration and Deployment Support and the Advanced Parameterization packages of
the TTCN-3 standard are not supported yet, except the Port with translation capability clause.
([21D).

In contrast to the standard, TITAN does not allow applying the same name to a structured type
and to an element of the same type.

From version 1.8.pl3 (or R8D) the logging machinery uses an internal TTCN-3 module, named
TitanLoggerApi, hence using this module name in user code is not allowed.

Referencing into an omitted field of any non-const variable/template of record/set type is
allowed and it will expand the structure to the level of reference. All the expanded fields under
omit will be unbound. This behavior is TITAN specific. According to the TTCN-3 standard (15.6.2
of [1]), the proper behavior would be a dynamic test case error in this situation. In case of
variable templates referencing into a matching mechanism will change the template regardless
of it being a left hand side or a right hand side value. In case of non-variable templates
referencing into a matching mechanism will cause an error. According to the TTCN-3 standard
the proper behavior for right hand side templates would be to return an expanded value but
not change it’s own value in case of AnyValue matching mechanism or stop with an error in
case of other matching mechanisms.

According to the standard, before matching the tools have to make sure that the template being
used is completely initialized, with no fields or elements left unbound. For performance reasons
this check is not done before the matching is done. Instead the matching will report the error,
when it tries to use an unbound field or elements.

In case the compiler is not able to decide at compile time, if all possible execution branches
contain a return statement, that is, in cases of alt statements, loops and branching statement
like if-else, select case, and so on, it will report an error without generating code. For example:

function f_check() return boolean {
for (var integer i:=0; 1 < some_variable; i := 1 + 1) {
return true;
}
}

In this case the compiler will report an error as it can not evaluate, if the loop will be executed
at least once, and if the loop is not executed, the end of the function would be reached without a
return statement. The workaround for this kind of problem is easy, the user needs to insert an
extra return statement at the end of the function, like:

function f_check() return boolean {
for (var integer i:=0; i < some_variable; i := i + 1) {
return true;
} return false

}

The language specification, after the "language" keyword, is ignored by the compiler.

For record of/set of types of fixed size, which have a length restriction of one concrete value,
and arrays the sizeof() and lengthof() predefined functions are not standard compliant:
sizeof() returns the number of elements, lengthof() returns the index of the last initialized
element plus one.

IPv6 networking between the MC, HC and Parallel Test Components is supported only on Linux
and Cygwin 1.7.

The optional "implicit omit" attribute can be applied directly to global value and template
definitions, but not to local value and template definitions.

The optional "implicit omit" attribute can be applied to a module, in which case it will have
effect on global value and template definitions in the module, and local value and template
definitions in the module, with the exception of (local) variable definitions

Templates using the decmatch (decoded content match, B.1.2.9 in [1]) matching mechanism
cannot be sent through test ports (doing so will result in a dynamic test case error). Template
module parameters using decmatch are also not supported.

Since TITAN version R5B the matching symbol "*" (AnyValueOrNone, B.1.2.4 in [1]) causes a
compile time error when assigned to a mandatory field of a record or set template, as it is stated
in the standard. This breaks backwards compatibility because in the older versions of TITAN
only a warning was emitted.

When assigning a value to a structure using the value list notation, assignment notation or
index notation (but not when assigning values to fields or elements one at a time), if the
structure’s old value (or part of it) is referenced on the right hand side, the structure’s new
value will only contain the fields or elements set in that assignment. All other fields or elements
that may have been initialized in prior assignments will be set to unbound.

If the structure’s old value is not referenced on the right hand side of the assignment, then only
the fields or elements mentioned in the assignment will be overwritten. All other fields or
elements will retain their previous values. Example:

type record R {
integer i1,
integer 12,
integer i3

}

var Rx :={1, 2, 3%};

X 1= 9{ 12 3 }; // assignment notation with no self-reference (0K)
// result: x := { i1 := 1, i2 := 3, i3 := 3 }

x :={ i1 x.i2 }; // assignment notation with self-reference (not 0K)
// result: x := { i1 := 3, i2 := <unbound>, i3 := <unbound> }

x.i3 := x.i1; // individual field assignment with self-reference (0K)
// result: x := { i1 := 3, i2 := <unbound>, i3 := 3 }

* Declaring multiple user ports (i.e. non-internal ports) with the same name is not fully
supported. The generated headers of two modules containing user ports with the same name
will cause C++ compilation errors, if one of the modules imports the other, or if it imports a
module that imports the other, etc. It is advised to give all user ports unique names.

[1] The semantic analyzer is able to verify modules with such definitions, but the generated C++ code will be incomplete or
€rroneous.

[2] Type compatibility for structured types is enabled only in the function test run-time due to performance considerations (except
record of/set of types for certain element types, see section 4.32.2). In the load test run-time aliased types and sub-types are treated
to be equivalent to their unrestricted root types. Different structured types are incompatible to each other. Two array types are
compatible if both have the same size and index offset and the element types are compatible according to the rules above.

[3] Recursive and non-recursive import means exactly the same when importing all definitions from a module.

Chapter 3. Clarifications to the TTCN-3
Standard

The TTCN-3 Core Language standard ([1]) and its Operational Semantics ([1]) give ambiguous
description for some language constructs. This section specifies our resolution for these ambiguities
that was followed during the implementation of our compiler and run-time environment.

3.1. Predefined Function Identifiers

The standard does not clarify the status of predefined function identifiers, that is, the names of
functions defined in Annex C of [1]. In our interpretation these words cannot be used to identify
userdefined TTCN3 entities because such a definition would hide the predefined function
completely. Thus our compiler treats these identifiers in the same way as the normal keywords of
the language. Therefore the inappropriate use of predefined functions, for example wrong number
of arguments, will result in syntax errors rather than semantic errors.

3.2. Meaning of any and all

The meaning of the keywords is only loosely defined in the standard. The resulting equivocality
concerns timer, port and component operations.

3.2.1. Timer and Port Operations

The meaning of keywords any and all in timer and port operations is unclear. These constructs
might be resolved statically at compilation time by applying the operation on all visible timers and
ports of the given scope unit. Our run-time environment, however, implements a dynamic
resolution, that is, it walks through the list of active timers and ports and applies the respective
operation. As a consequence of this, such operations are also applicable in scope units without
visible timers and ports, for example in functions without runs on clause. Because of the run-time
evaluation there is one limitation, which is verified by our semantic analyzer: the receiving port
operations, that is, receive, trigger, getcall, getreply, catch and check) that refer to any port cannot
have template parameter and value or param redirect. To avoid incompatibilities with future
versions it is not recommended to use any or all in timer and port operations.

3.2.2. Component Operations

The standard does not specify explicitly the behavior of the component operations that refer to all
component when only the MTC exists, that is, no PTC had been created during the testcase. In our
implementation both all component.running and all component.alive return true and the
operations all component.done and all component.killed succeed immediately in this situation.
Operations all component.stop and all component.kill do nothing; instead, a warning is issued. The
same rules are applied in single mode, when it is impossible to create PTCs, as well.

3.3. Response and Exception Handling Parts

The behavior of the response and exception handling part of a call operation is not clearly
specified in the standard. The allowed getreply and catch operations can handle only the possible
responses and exceptions of the previous signature call. In our implementation if any other event
arrives into the port queue during the execution of the response and exception handling part it
may block the execution forever. The runtime environment generates a dynamic test case error in
such a situation. If the test suite writer expects any other event on the same port during the
outstanding call, for example a simultaneous incoming call initiated by the other side, a non-
blocking call operation with the keyword nowait should be used. The response and the possible
incoming calls should be handled in a forthcoming regular alt construct using the appropriate
getreply and getcall operations.

3.4. Variable Lists in param Redirect

In the standard, it is not clear that the Variablelist notation in the param redirect of getcall and
getreply operations should refer to all parameters of the respective signature or to the relevant
parameters' only. Our compiler expects variable entries only for the relevant parameters and
ignores the irrelevant ones. This is because otherwise the test writer should use NotUsedSymbols for
all irrelevant parameters, which would be a redundant notation. For example, if a signature has
one in, one out and one inout parameter the compiler expects two variable entries in both getcall
and getreply operations.

3.5. References between Language Elements

The TTCN-3 standard does not specify clearly the permitted references between different kinds of
language elements. The following table shows our interpretation.

Table 1. References between TTCN-3 elements

Referred Literal value Constant External Module Template
element constant parameter
Referring

element

Constant Y Y* N N N
Array size Y Y N N N
Subtype Y Y N N N
constraint

Default value Y Y Y N N
of module

parameter

Referred Literal value Constant External Module Template
element constant parameter

Referring

element

Actual value of Y N N N N
module

parameter (in

configuration

file)

Default Y Y Y Y N
duration of
timer

Template (non- Y Y Y Y Y*
parameterized)

Legend:

* N Not allowed by the TTCN-3 language.
* Y Allowed and fully supported by the current version of this TTCN-3 tool.

* Y* Allowed and fully supported, but circular reference chains must be avoided.

» The above table implies that the value of all constants and the attributes of all
type constructs (type constraints, array sizes, etc.) shall be known at compilation
time.

* ASN.1 value assignments are treated as TTCN-3 constants.

* The value of constants shall refer only to built-in operators or additional
predefined functions.

NOTE * The body of non-parameterized templates and the default duration of timers
shall be known at test startup (load) time when all module parameters are
known.

* The actual parameters of templates or the actual duration of timers shall be
determined run-time because the actual value of variables may be referred.

* The rules for a language element do not depend on its scope unit. For example
the same rules apply on module, component and local (function, testcase,
altstep) constants.

3.6. Encoding Rules
The standard does not specify clearly some of the encoding rules.

» The encoding of fields in record, set and union types is supported.

* The order of attributes of the same type in a with statement is important. The second variant
might override the first, or an overriding attribute will override all the following attributes of

the same type.

* Encode attributes are an exception to this as they are not really attributes, but "contexts". It
cannot be determined to which encode "contexts" the variants of the same with statement
should belong if there are several. As having several encode "contexts" in the same with
statement would be a bad coding practice, a warning is generated and the last encode is used as
the statement’s encode "contexts".

* As encodes are contexts, an encode is only overridden if the overriding context is not the same.

* The order of attributes of different type in a with statement is not important, they do not affect
each other.

* In case of structured types, the encode context of the type is the encode context of its fields too,
if the fields do not override this attribute. The other attribute types are handled separately for
the structured type and its fields. Attributes inherited from higher level
(module/group/structured type) might change the encoding of a record and that of its fields.

 Attributes with qualifiers referring to the same field are handled as if they were separate with
statements. The same rules apply to them. For example, the last encode from the ones referring
to the same field is taken as the encoding context of the field.

 Attributes belonging to a field of a structured type or a type alias have the following overwriting
rules. A new variant attribute together with the directive override clears all current attributes
defined for the type of the field. A new variant attribute without the directive override
overwrites only the current variant attribute, all other attributes remain unchanged.

3.7. Address Type

The standard does not specify clearly the status of special TTCN-3 type address. Our implementation
is based on the rules below.

The test suite writer can assign the name address to a regular data type. There can be at most one
type named address in each TTCN-3 module. It is allowed that different modules of the test suite
assign the name address to different types.

The name address cannot be assigned to the following TTCN-3 types:

* port types
« component types"’

* signatures

the built-in type default™

Whenever the word address is used as a type, it is assumed to be a reference to the type named
address in the current module. The type named address cannot be imported into another TTCN-3
module, that is, it can be referenced using the name address only within its own module. If one
wants to use this type in other modules a regular alternate name must be assigned to it with type
aliasing.

Addressing the SUT in communication operations is allowed only if the address type is defined in
the same module as the corresponding port type. In addition, the port type must have a special

10

extension attribute to support address values (See section "Support of address type" in [16] for more
details).

Note that it is possible to use different address types on different ports in the same TTCN-3 module
if the respective port types are imported from different modules, but neither address type may be
referenced with name address by the importing module.

3.8. Importing import Statement from TTCN-3 Modules

See [18] standard for detailed description. Additional information for better understanding:

» Import (see following chapters of the [18] standard 8.2.3.1-8.2.3.6, and 8.2.5, only applies for
global definitions (see [18] table 8. in 8.2.3.1), therefore import functionality is not interfered by
import of import statement.

* Import statement can be imported by only import of import statement (chapter 8.2.5 and
8.2.3.7).

» Import statements are by default private, importing of import statement with public or friend
visibility is recursively resolved, and thus importing of importing of import statement is
possible.

» Importing of import statement - in case of friend visibility -recursive resolving is broken, if the
import chain has a member that is not friend of the exporting module.

* Importing of import statement circular import chain causes error.

» Example for friend type and importing of import statement

B.tten // friend template
friend module C, E;

friend template integer t B_i_fr := 0;

C.tten // public import and importing of import statement, friend of B
public import from B all;
public import from B {import all};

D.tten // public import and importing of import statement, NOT friend of B
public import from C all;
public import from C { import all };

E.tten // public import and importing of import statement, friend of B
public import from D { import all };
public import from D all;

testcase tc_B() runs on MTC {
var integer i:=valueof(t_B_i_fr); //Visible!
setverdict(pass);

}

11

3.9. Description of Behavior Types Syntax

TITAN supports the behaviour type package of the TTCN-3 standard, but with a different syntax. For
details of the behaviour types see [5].

Table 2. Behaviour types - refers shows the different syntax of the function behaviour type.
Standard (6.2.13.2 in [5]) Titan specific syntax

type function MyFunc3 (in integer p1) return var MyFunc3 myVar1 := refers(int2char);
charstring;

NOTE The functionality is same as in the standard, only the syntax is different.

The syntax of the apply operation is different, Table 3 Behaviour types - apply and derefers
Standard:

Table 3. Behaviour types - apply and derefers

Standard (6.2.13.2 in [5]) Titan specific syntax
type function MyFuncType (); v_func.apply(MyVar2)
type function t_functionstartTests(); vl_comp.start(derefers(vl_function2)());

3.10. Partially initialized structure values

According to the standard TTCN-3 variables and module parameters (of structured types) can be in
3 different states during their initialization:

* uninitialized (or unbound) - none of the value’s fields or elements has been initialized - values in
this state cannot be copied or used on the right hand side of an operation;

* partially initialized - some of the value’s fields or elements have been initialized, but not all of
them (or at least not enough to meet the minimum type restrictions) - these values can be
copied, but cannot be used on the right hand side of an operation;

* fully initialized (or bound) - all of the value’s fields or elements have been initialized - these
values are ready to be used on the right hand side of an operation.

The isbound operation should only return true if the value is in the 3rd (fully initialized) state.

This isn’t the case in the TITAN runtime. Values only have 2 states: bound and unbound, which is
what the isbound operation returns. This can be any combination of the previously mentioned 3
states, depending on the type:

* record/set: unbound = uninitialized, bound = at least partially initialized, meaning that a record
/ set is bound if at least one of its fields is bound'”;

* record of / set of: unbound = uninitialized, bound = at least partially initialized, meaning that
the record of is only unbound if it has never received an initial value (even initializing with {}
creates a bound record of / set of value);

12

* array: unbound = uninitialized or partially initialized, bound = fully initialized, meaning that
the array is only bound if all of its elements are bound;

* unions can’t be partially initialized, so TITAN stores their bound state correctly (although it’s still
possible to create union values, where the selected alternative is unbound, with the legacy
command line option -B; these values would be considered bound by TITAN).

There is a workaround in TITAN’s implementation of records / sets to allow the copying of partially
initialized values (union values with unbound selected alternatives can also be copied when the
compiler option -B is set). In all other cases the user is responsible for making sure the value is
usable on the right hand side of an operation. The isbound function is usually not enough to ensure,
that the value is usable.

3.11. Concatenation of templates

TITAN supports the concatenation of templates and template variables of string types (bitstring,
hexstring, octetstring, charstring, universal charstring) and list types (record of, set of) with the
following limitations:
» templates can only be concatenated in the Function Test runtime;
* valid concatenation operands (for binary string and list types):
o specific values (i.e. literal values),
o any value ("?"") with no length restriction or with a fixed" length restriction,
o any value or none ("*") with a fixed length restriction,
o references to constants, templates, variables, or template variables;

» operands of charstring and universal charstring template concatenation cannot contain
matching mechanisms (not even patterns), only specific values and references;

* reference operands of binary string (bitstring, hexstring, octetstring) template concatenation
can also refer to binary string templates with wildcards in addition to the template types listed
as valid operands (these cannot be used in template concatenations directly, because of parser
limitations);

* similarly, reference operands of record of or set of template concatenation can also refer to
template lists containing matching mechanisms (but these cannot appear in template
concatenations directly due to parser limitations);

* the first operand of a record of or set of template concatenation can only be a reference
(because of parser limitations);

* template module parameters cannot be concatenated in the configuration file.

3.12. The predefined function replace

In TITAN the predefined function replace cannot be used on arrays.

If the fourth parameter of replace is an empty string or sequence, then it acts as a delete function
(the specified substring or subsequence is simply removed from the input value and nothing is

13

inserted in its stead).

Example:

type record of integer IntList;

var IntList vi_myList := {1, 2, 3 };

var IntList vl_emptylList := {};

replace(vl_myList, 1, 2, vl_emptylList); // returns { 1 }
replace("abcdef", 2, 1, ""); // returns "abdef"
replace('12FFF'H, 3, 2, "'H); // returns '12F'H

3.13. The execution of an altstep

Whenever an altstep is called, either from an alt statement or through an activated default, both
the local definitions and the alt-branches in the altstep body are executed. The local definitions
are allocated and initialized every time the altstep begins execution, and they are destroyed every
time execution of the altstep ends, regardless of whether any of the alt-branches was chosen.

Example:

type component CT {
var integer counter := 0;
timer tmr;

}

function f() runs on CT return integer {
counter := counter + 1;
return counter;

}

altstep as() runs on CT {

var integer local := f();

[] tmr.timeout { log(counter); }
+

testcase tc() runs on CT {
tmr.start(2.0);
alt {
[1 as();
}
}

In the above example altstep as is executed twice. Once, after the first snapshot is taken in the alt
statement in testcase tc (when the timer has not timed out yet), and once, when the second
snapshot is taken (when the timer has timed out). In both cases the local definition in the altstep is
initialized, calling function f. The value of component variable counter at the time it is logged is 2.

14

3.14. ASN.1 extension additions

Extension addition fields in ASN.1 SEQUENCE and SET types are treated as optional fields, after they
are imported into TTCN-3. The ASN.1-based codecs, BER and OER, still treat these fields as they are
declared in ASN.1.

[4] Relevant parameters are the in and inout parameters in case of getcall operation as well as out and inout ones in case of
getreply.

[5] If component types were allowed for addressing the compiler would not be able to decide whether a component reference in
the to or from clause of a communication operation denotes a test component, which is reachable through a port connection or an
address inside the SUT, which is reachable through a port mapping.

[6] The values of type default (i.e. the TTCN-3 default references) cannot be passed outside the test component by any means.
[7] The bound state of fields or elements is also determined by using the ishound operation on the field or element.

[8] In this case a range length restriction, whose upper and lower bounds are equal, is also considered as a “fixed' length
restrictione.g.: ? length(2..2) is a valid operand, but ? length(2..3) is not

15

Chapter 4. TTCN-3 Language Extensions

The Test Executor supports the following non-standard additions to TTCN-3 Core Language in order
to improve its usability or provide backward compatibility with older versions.

4.1. Syntax Extensions

The compiler does not report an error or warning if the semi-colon is missing at the end of a TTCN-
3 definition although the definition does not end with a closing bracket.

The statement block is optional after the guard operations of altsteps, alt and interleave
constructs and in the response and exception handling part of call statements. A missing statement
block has the same meaning as an empty statement block. If the statement block is omitted, a
terminating semi-colon must be present after the guard statement.

The standard escape sequences of C/C++ programming languages are recognized and accepted in
TTCN-3 character string values, that is, in literal values of charstring and universal charstring
types, as well as in the arguments of built-in operations log() and action().

As a consequence of the extended escape sequences and in contrast with the TTCN-3
NOTE standard, the backslash character itself has to be always duplicated within
character string values.

The following table summarizes all supported escape sequences of TTCN-3 character string values:

Table 4. Character string escape sequences

Escape sequence Character code (decimal) Meaning
7 bell
8 backspace
12 new page
10 line feed
13 carriage return
9 horizontal tabulator
11 vertical tabulator
\ 92 backslash
" 34 quotation mark
' 39 apostrophe
? 63 question mark
<newline> nothing line continuation
NNN octal notation (NNN is the
character code in at most 3
octal digits)

16

Escape sequence Character code (decimal) Meaning

NN hexadecimal notation (NN is the
character code in at most 2
hexadecimal digits)

34 quotation mark (standard
notation of TTCN-3)

Only the standardized escape sequences are recognized in matching patterns of
NOTE character string templates because they have special meaning there. For example,
inside string patterns \n denotes a set of characters rather than a single character.

Although the standard requires that characters of TTCN-3 charstring values must be between 0 and
127, TITAN allows characters between 0 and 255. The printable representation of characters with
code 128 to 255 is undefined.

The compiler implements an ASN.1-like scoping for TTCN-3 enumerated types, which means it
allows the re-use of the enumerated values as identifiers of other definitions. The enumerated
values are recognized only in contexts where enumerated values are expected; otherwise the
identifiers are treated as simple references. However, using identifiers this way may cause
misleading error messages and complicated debugging.

The compiler allows the local definitions (constants, variables, timers) to be placed in the middle of
statement blocks, that is, after other behavior statements. The scope of such definitions extends
from the statement following the definition to the end of the statement block. Forward-referencing
of local definitions and jumping forward across them using goto statements are not allowed.

The compiler accepts in-line compound values in the operands of TTCN-3 expressions although the
BNF of the standard allows only single values. The only meaningful use of the compound operands
is with the comparison operators, that is, == and !=. Two in-line compound values cannot be
compared with each other because their types are unknown; at least one operand of the
comparison must be a referenced value. This feature has a limitation: In the places where in-line
compound templates are otherwise accepted by the syntax (e.g. in the right-hand side of a variable
assignment or in the actual parameter of a function call) the referenced value shall be used as the
left operand of the comparison. Otherwise the parser gets confused when seeing the comparison
operator after the compound value.

Examples:

17

// invalid since neither of the operands is of known type

if({1,2}={2,1}H{}

// both are valid
while (v_myRecord == { 1, omit }) { }
if ({ f1 :=1, f2 := omit } = v_mySet) {}

// rejected because cannot be parsed
v_myBooleanFlag := { 1, 2, 3 } == v_myRecordOf;
f_myFunctionTakingBoolean({ 1, 2, 3 } != v_mySetOf);
// in reverse order these are allowed

v_myBooleanFlag := v_myRecordOf == { 1, 2, 3 };
f_myFunctionTakingBoolean(v_mySetOf != { 1, 2, 3 });

4.2. Visibility Modifiers

TITAN defines 3 visibility modifiers for module level definitions, and component member
definitions: public, private, friend (8.2.5 in [1]).

On module level definitions they mean the following:

* The public modifier means that the definition is visible in every module importing its module.
* The private modifier means that the definition is only visible within the same module.

» The friend modifier means that the definition is only visible within modules that the actual
module declared as a friend module.

If no visibility modifier is provided, the default is the public modifier.
In component member definitions they mean the followings:

* Th